Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Foreword

The interrelationships of water and land have been an important factor in the development and growth of the Charleston community since the first Europeans settled here. The absence of a well-defined drainage pattern and the other unusual geographic and topographic features of this area have intensified the problems.

Most of the water control measures installed to date in the urban and rurban areas have been the result of expediency incident to population growth and not according to a well developed plan of action. The lack of such a plan has resulted in unwise expenditures and has emphasized the need for, and the importance of, a comprehensive study of the problem.

The Feasibility Study of Requirements for Main Drainage Canals in Charleston County is the outgrowth of interest originally evidenced by the supervisors of the Charleston Soil Conservation District. The plan as developed is the result of cooperative effort on the part of Charleston County Council and the Charleston Soil Conservation District. It is the first step toward solving the drainage needs of the County, which is recognized as a problem of first priority. Agencies on all levels of government - local, county, state and federal - and numerous organizations and individuals, cooperated in the development of the plan. The Charleston Soil Conservation District and the Charleston County Council contributed largely to the cost of the project. Technical assistance was furnished by the Soil Conservation Service.

The plan will provide a firm basis for action by the Charleston County Council in determining needed legislation, methods of financing the necessary drainage improvements and priorities of work. The cooperation of other agencies, groups and individuals, in the use of the plan also will be encouraged.

ext	
Introduction and Scope _ _ _ - . -	
Factors Affecting Drainage - -	1
Topography	1
Tidal Ranges	1
Rainfall	1
Soils	3
Culverts	3
w Urbanization	3
Existing Drainage System	6
Maintenance	6
Drainage Principles	6
Surface Drainage -	6
Sub-surface Drainage	6
Drainage Requirements	6
Design Criteria - - - - - - -	
Drainage Coefficients	7
Velocity - - -	7
Channel Cross Section	7
Value of Roughness	
Coefficient "n"	7
Channel Depth and Width	9
Side Slopes -	9
Design at Culverts	9
Right-of-way Requirement - Berm	
Width, Spoil Bank	9
Dikes, Conduits and Pumps	10
Needs and Location	10
Design Criteria	10
Description of Areas - - - - -	
Area 1 - James Island	10
Area $2-5 \mathrm{St}$. Andrews -	10
Area 3 - North Charleston -	
Ladson	12
Area 4 - Johns Island	12
Area 5 - Mt. Pleasant - Awendaw-	12
Area 6 - Meggett - Hollywood	12
Areas 7 and 8 - Wadmalaw Island and Edisto Island - - - - -	12
Area 9 - McClellanville	12
Area 10 - Parkers Ferry	3
Area 11 - Bear Swamp - -	3
Area 12 - Caw Caw Swamp	13
Reconnalssance Soll Survey - - -	
Description of Soil Groups and	
Their Drainage Problems	13
Soil Group 1 (Map Symbol 1)	3
Soil Group 2 (Map Symbol 2)	15
Soil Group 3 (Map Symbol 3)	15
Soil Group 4 (Map Symbol 4)	15
Soil Group 5 (Map Symbol 5)	6
Soil Group 6 (Map Symbol 6)	6
Soil Group 7 (Map Symbol 7)	16
Soil Group 8 (Map Symbol 8)	16
Soil Group 9 (Map Symbol 9)	16
Soil Group 10 (Map Symbol 10)	17
Soil Group 11 (Map Symbol 11)	17
Soil Group 12 (Map Symbol 12)	17
Soil Group 13 (Map Symbol 13)	17
Soil Group 14 (Map Symbol 14)	17

Introduction and Scope \quad _ _ . . 1
Factors Affecting Drainage - . - $\quad \mathbb{1}$
Topography - - - - - - - - - 1
Tidal Ranges - - - - - . - - - 1
Rainfall - - - - - -
Solls - - - - - - - - - -
Urbanization - - - - - - - - 3
Existing Drainage System - - - - 6
Maintenance - - - - - - - - - 6
Surfer 6
Sub-surface Drainage - - - - - 6
Drainage Requirements _ - . - - 6
esign Criteria - - - - - - - - 7
Drainage Coefficients - - - - - 7
Channel Cross Section _ _ . . 7
Value of Roughness
Coefficient "n" - - - - - -
Channel Depth and Width - - - - 9
ide slopes -
Design at Culverts - - - - - - -
ght-of-way Requirement - Berm
Width, Spoil Bank $\quad \ldots \ldots$
Dikes, Conduits and Pumps - - - - 10
Needs and Location - _ _ _ - - _ 10
Design Criteria - - - - - - - -
Description of Areas - - - - - - - 10
Area 1 - James Island _ - - - 10
Area 2 - St. Andrews - - - - - 10
Area 3 - North Charleston -
Ladson - - - - - - - - - - -
Area 4 - Johns Island - - 12
Area 6 - Meggett - Hollywood - - 12
12
Area 9 - McClellanville - - - - 12
Area 10 - Parkers Ferry - - - - 13
Area 11 - Bear Swamp - - - - - 13
Area 12 - Caw Caw Swamp - - - - 13
econnalssance Soil Survey - - - -
Their Drainage Problems - - - 13
Soil Group 1 (Map Symbol 1) - - 13
Soil Group 2 (Map Symbol 2) - - 15
Soil Group 3 (Map Symbol 3) - - 15
Soil Group 4 (Map Symbol 4) - - 15
Group 5 (Map Symbol

Soil Group 7 (Map Symbol 7) - - 16
Soil Group 8 (Map Symbol 8) - - 16
Soil Group 9 (Map Symbol 9) - - 16
Group 10 (Map Symbol

Soil Group 12 (Map Symbol 12) - 17

Soil Group 14 (Map Symbol 14)
Factors Considered in Preparation of Plan _ _ _ _ _ _ _ _ _ 17
Engineering Considerations 18
Design 18
Acquisitions of Rights-of-way 18
Maintenance of Channels 18
Obstruction 18
Definition of Terms 18
Technical References 21
Authority and Acknowledgement 21
Explanation of Engineering Data Tables 22
Engineering and Design Data 23
Area 1 - James Island 23
Area 2 - St. Andrews _ _ _ _ - - 25
Area 3 - North Charleston -
Ladson 27
Area 4 - Johns Island 32
Area 5 - Mt. Pleasant - Awendaw- 35
Area 6 - Meggett - Hollywood 38
Area 7 - Wadmalaw Island 42
Area 8 - Edisto Island _ _ _ _ - 44
Area 9 - McClellanville 46
Area 10 - Parkers Ferry 50
Area 11 - Bear Swamp - - - - - 52
Area 12 - Caw Caw Swamp 53
Maps Showing the Drainage
Plan - - - - - - Follow Page 54
Figures
Figure No. 1 - Drainage Coefficient
Curves - - - - - - - - - - - - - 8
Figure No. 2 - Typical Main DitchCross Section - Showing Basis forDetermining Right-of-way Width -9
Figure No. 3-Typical Profile andCross Section - Dike and PumpStructure11
Figure No. 4 - Plan View ShowingTypical Installation of Dike -R/C Pump Structure - Tide Gate -and Channels - _ _ - - _ - - -11
Figure No. 5 - Index to Map
Sheets - - - . - . Follows Page 54
Tables

Table No. 1 - Rainfall Data -
U. S. Weather Bureau - - - - - 2
Table No. 2 - Brief Description ofSoils and Their Estimated Proper-ties Significant to Engineering4
Table No. 3 - Summary of Soil
Groups by Areas in Acres - - - 14
Table No. 4 - Summary of Data and Estimated Cost - Dikes - Tide Gates and Pumps 20
Table No. 5 - Summary of Engineer- ing and Design Data by Areas - - 20

FEASIBILITY STUIDY OF REQUIREMENTS FOR MAIN IDRAINAGE (ANALS CHARLESTON COLNTY, SOUTII CAROLINA

Introduction and Scope

The use of most of the land in Charleston County is dependent on providing adequate drainage. The lack of drainage is the principal detriment to the development of the land resources of the county. It results in frequent and costly crop damage on agricultural land and to property damage and disruption of facilities, both public and private, in urban and industrial areas.

The need to reduce flooding through drainage improvement is recognized as a problem of first priority.

The Feasibility Study of Requirements for Main Drainage Canals in Charleston County is the logical first step toward solving the excess water problem. The purpose of the study is to point out the extent and severity of the drainage problem in the county and to furnish a guide to determine the physical feasibility and the estimated cost of the needed improvements. To accomplish this purpose, a Main Canal Drainage System has been developed for the major watersheds of the county and a discussion of some of the principal criteria used in design given.

The data in this report is based on reconnaissance surveys, information presently available, and on knowledge gained by long experience in planning and establishing drainage facilities in the county. The data is adequate for the purpose of determining preliminary design and cost estimates but is not adequate for the preparation of final construction plans, designs, and costs. The data herein presented, however, can be used by qualified engineers as guides in securing detailed information for these purposes. Included also are technical references which can supply

AGREEMENI SIGNED--Dr. T. S. Buie, SCS State Conservationist, signs an agreement to blan a county-wide drainage feasibility study in Charleston County. J. Mitchell Graham (left), chairman of the Charleston County Council, and T. Wilbur Thornhill (right) chairman, Charleston Soil Conservation District also signed the agreement.
information for the final engineering investigations, plans, and designs.

Factors Affecting Drainage

The location of Charleston County along the Atlantic Seaboard and its physical features, result in complex drainage problems. The physical features that contribute to these problems are topography, high tidal ranges, rainfall, soils, and land use changes. All these are in-ter-related. A brief discussion of how the physical features affect drainage follows.

Topography

Topography is a severely limiting factor affecting drainage. The land is generally level with slight undulations. Sharp breaks in topography occur along tidal streams and marshes. Elevations in the county range from sea level to 70 feet above sea level with most of the drainage problems occurring between the 5 to 10foot contour (M. S. L. Datum). The coast line is irregular and indented by tidal creeks which are the natural outlets for drainage. The natural interior drains are extensions of the tidal creeks with slightly increasing elevations as they penetrate inland. The natural drains are broad, have flat grades, and are heavily vegetated. In their natural state, little or no channel exists, causing extensive ponding in depressed areas.

Tidal Ranges

The wide tidal fluctuations provide the only means by which gravity drainage, at ebb tide, can be accomplished. These fluctuations also result in the intrusion of high tides inland resulting in restricted drainage or flooding.

The tidal effects along the coast line of the county are very complex and highly variable dependant on the force, direction and duration of winds and other weather events occurring seaward. Predicted or normal range of tides above mean low water, with no consideration of wind effects, is 5.2 feet, with spring tides ranging to 6.8 feet. However, daily tide records maintained by the U. S. Weather Bureau, Charleston, S. C., show that there is a considerable variation between the predicted and actual tide ranges due to wind. Generally, tide heights have a departure of 2.0 feet above the normal and low tides have a departure of $1.0-1.5$ feet below normal. Storm tides which occur when sustained winds along the coast exceed 40 miles per hour have a departure from normal of 2.5 to 3.0 feet. A thorough knowledge of tidal action is essential in proper planning and design of drainage systems and supporting structures.

Rainfall

U. S. Weather Bureau Records, Table No. 1, shows monthly and yearly rainfall records for

Table No．I
Rainfall Data－U．S．Weather Bureau Charleston，S．C．

CHARLESTON，SOUTH CAROLIMA TOTAL PRECIPITATION

Year	Jan．	Feb	Mar．	Apr．	May	June	July	Aug．	Sept．	Oct．	Nov．	Dec．	Annual
1906	3.65	2.08	2.32	1.17	2.81	4.75	8.68	7.87	3.31	4.87	38	1.83	43.62
1807	86	1.61	1.01	3． 72	2.98	4.58	2.33	5.04	2.73	1.53	1.22	4.06	31． 71
1908	2.49	3.15	2.16	4.92	2.01	2.70	2.80	4.88	1.06	1.55	2.75	84	31.41
1909	61	1.86	5.89	3.58	1.54	1.84	4.17	7.65	5.35	2.00	2.44	1.75	38，86
1910	1.39	3.64	． 63	1.00	1.01	3.85	4.68	10.00	4.39	6.18	1.61	1.21	38.89
1911	． 56	1.11	1.27	1.74	． 13	2.64	2.23	7.52	5.24	3.92	1.49	3.63	31．88
1912	3.85	5.17	4.14	4.92	3.93	8.88	3.05	2.77	10.42	． 96	1.30	3.80	51，32
1913	． 99	5.53	3.60	1.40	． 18	2.86	5.51	3.50	7.26	6.65	1.19	2.59	41.48
1914	2.10	6.87	2.34	2.77	82	4.33	7.14	4．13	4.89	4.14	2.34	2.35	44.32
1915	7.44	2.53	2.63	1.13.	8.82	4.52	2.98	5.40	2.07	4.27	1.65	2.81	46.55
1916	1.34	1.47	1.86	2.35	1.22	9.75	11.61	3.10	2.78	4.37	1.11	1.47	42.51
1917	2.69	2.07	3.05	． 97	3.80	1.92	9.85	5.06	2.34	． 33	． 31	1.08	33.57
1918	1.13	1.31	1.65	2.49	3.65	27	7.69	2.87	3.10	1.68	2.34	3.17	31.33
1919	1.68	5.51	4.05	73	1.69	8.33	8.53	5.70	1.76	28	23	19	38.68
1920	1.60	2.61	4.65	7.40	1.96	2.45	4.68	7.02	8.30	． 06	3.07	3.00	46.81
1921	1.58	1.26	2.86	2.06	5.92	61	18.61	5.70	5.19	1.70	1.82	． 51	45.82
1922	2.48	5.63	3.15	1.50	8.58	3.54	8.02	5.18	1.13	5.72	10	4.61	50.62
1923	2.21	1.03	2.36	1.06	6.30	3，56	7.23	12.29	2.11	2.88	1.79	3.91	46.58
1924	－3．24	1.57	3.68	5.76	2.36	2.39	6.58	8.26	11.65	1.66	72	2.93	51.07
1925	4.85	1.84	1.28	1.89	1.96	5.49	2.38	1.62	1.94	3.06	3.09	4.00	33.42
1926	5.02	3.03	3.61	2.48	2.33	5.65	4.29	2.36	2.66	． 85	1.90	． 92	35.12
1927	． 63	2.17	2.97	． 83	． 71	4.10	4.81	8.78	1.23	2.37	46	1.19	29.88
1928	． 43	7.44	3.08	2.54	1.05	2.75	5.18	2，62	14.30	1.07	1.03	1.09	42.78
1929	4.66	4.86	2.05	1.88	4.30	4.81	6.07	5.22	3.88	1.71	2.00	3.54	44.98
1930	2.37	． 81	4.17	2.60	． 76	6.59.	6.09	1.75	3.22	． 79	1.23	2.05	32.43
1931	2.37	1.67	2.88	． 92	1.12	2，46	6， 88	4．93	2． 08	71	53	2.25	28.60
1932	96	1.17	2.62	， 31	5，64	6.59	4.03	8.42	7.18	6.98	2.24	． 68	44.84
1933	3.85	5.93	． 99	2.29	1.76	2.72	8.12	8.69	13.04	2.81	2.25	40	52.65
1934	1.80	3.07	1.16	1.72	5.41	1.68	2.35	7.05	4.04	5.73	2.64	2.18	38.83
1835	2.27	1.93	1.02	1.12	7.08	3.45	17.78	9.53	5.53	． 14	1.48	2.72	54.06
1936	2.54	3.45	5.51	2.20	1.78	3.08	3.42	8.37	2.47	5.55	． 83	2.98	40.20
1837	3.91	4.68	1.84	6.55	1.80	3.11	9.62	4.08	4.34	2.88	4.86	1.48	48.76
1938	1.12	76	33	2.85	3.94	3.10	5.99	3.80	5.24	2.63	60	1.14	31.10
1938	2.08	8.96	1.87	2.05	2.54	6.83	10.77	8.78	1.18	． 88	1.91	1.38	48.04
1940	3.31	3.73	2.62	1.77	2.01	2.07	7.15	18.71	2.18	． 08	1.54	2.36	45.49
1841	1.83	2.56	3.55	1.36	． 07	11.03	13.39	12.77	． 78	2.55	2.36	0.58	62.63
1942	2.88	2.84	4.92	． 85	2.70	5.30	7.37	4.65	5.23	01	1.58	2.98	41.37
1943	3.49	． 64	5.49	2.69	2.78	2.93	8.61	1.35	2.41	． 05	1.25	4.47	38.17
1944	3.30	7.18	10.51	4.77	． 95	4.76	4.29	3.24	4.85	4.35	2.01	92	51.23
1945	1.55	4.02	1.07	4.62	2.32	7.12	17.25	11.57	16.24	2.98	1.31	4.82	74.67
1946	3.63	3.03	3.60	2.60	4.52	4.94	10.45	4.90	3.31	2.68	4.34	57	48.97
1947	1.06	． 36	7.28	4.37	2.79	10.76	7.69	6.79	10.18	3.53	8.28	6.14	67.41
1948	3.88	3.51	8.29	4.88	7.05	2.10	10.30	4.10	7.71	2.84	3.50	3.32	61.28
1949	． 68	2.56	1.80	2.08	6.19	4.12	5.64	11.45	6.18	1.80	75	83	46.05
1950	． 60	． 28	5.13	． 93	3.20	1.21	12.98	5.14	5.66	2.60	1.16	4.21	43.35
1951	． 89	1.18	3.74	1.61	． 96	4.99	5.75	3.82	8.07	1.75	2.05	3.20	36.23
1952	． 98	5.51	3.88	4.14	2.54	1.74	2.92	5.10	7.87	1.13	1.50	2.11	38.20
1853	1.80	4.29	3.65	1.01	． 85	7.37	6.15	7.03	4.41	67	1.52	5.16	44.03
1954	1.31	． 42	1.96	1.27	4.13	． 47	5.23	． 18	5.20	5.56	1.48	3.60	31.02
1955	4.49	1.56	0.47	2.97	4.00	2.86	4.10	3.35	13.63	1.24	0.92	0.69	40.46
1956	1.99	2.06	2.58	2.87	1.81	4.97	5.80	4.24	5.58	1.95	0.59	1.29	35.13
1957	1.06	3.27	3.88	1.49	5.87	5.93	7.48	4.78	8.25	2.38	3.07	3.35	51.78
1858	4.53	2.40	4.94	6.63	1.33	5.62	2.54	4.92	5.94	2.68	0.61	2.22	44.36
1959	3.73	4.00	7.58	1.62	4.43	1.19	7.71	2.79	9.94	11.74	1.58	1.73	58．64
1860	4.36	4.42	3.48	1.84	1.45	3.25	11.74	3.78	8.17	1.46	0.77	2.09	48.50
1801	1.96	4.73	5.27	8.13	4.09	6.63	1.98	11.78	1.21	3.71	1.28	1.32	48.81
917r．	1871	1091）											
$\begin{aligned} & \text { HECOR } \\ & \text { MEAN } \end{aligned}$	｜ 2.84	3.21	3.44	2.76	3.22	4.60	7.00	0.40	8.39	3.16	2.16	2.77	47.04

NORMALS， MEANS，AND EXTREMES

Precipitation							Wind				
$\begin{aligned} & \$ \\ & \$ \\ & \$ \\ & 3 \\ & \text { 塞 } \\ & 0 \end{aligned}$		$\stackrel{4}{8}$		${ }_{j}^{\text {y }}$		$\begin{gathered} \text { 告 } \\ \hline- \end{gathered}$			Fastest mile		
									詈	号	－
（b）	88		88		86		27	9	47		
2.48	7.83	1878	0.19	1898	3.98	1884	9.9	SW	61		1930
3.07	10.45	1874	0.28	1950	4.77	1944	10.6	WSW	52	NW	1946
3.38	10.51	1944	0.33	1938	4.07	1936	10.9	SSW	72		1942
2.45	15.00	1877	0.17	1904	8.30	1877	11.0	SSW	65	E	1956
3.36	9.56	1922	0.07	1941	5.88	1915	10.2	S	66		1934
4.29	18.50	1893	0.27	1918	6.01	1945	9.6	SW	54	NW	1945＋
8.04	17.78	1935	1.05	1875	8.56	1950	9.3	SW	60		1935
6.54	19.18	1885	0.18	1954	8.55	1940	9.4	SW	73		1940
5.31	16.24	1945	0.40	1901	10.57	1933	10.1	NNE	76		1933
2.44	14.32	1876	0.01	1942＋	9.55	1876	10.2	NNE	56		1932
1.92	7.54	1888	0.10	1922	5.84	1889	9.8	NNE	49		1933
2.71	10.56	1941	0.03	1889	3.46	1685	9.7	SW	73	NE	1947
45.99	10.18	Aug.	0.01	$\begin{aligned} & \text { Oct. } \\ & 1942+ \end{aligned}$	10.57	$\begin{aligned} & \text { Sept. } \\ & 1933 \end{aligned}$	10.1	Sw	76		$\begin{aligned} & \text { Sept. } \\ & 1933 \end{aligned}$

TABLE SHOWING RAINFALL IN INCHES FOR SELECTED DURATIONS＊

	30 Min．	1 Hour	2 Hours	3 Hours	6 Hours	12 Hours
1 Year	1.5	1.8	2.2	2.3	2.7	3.3
2 Years	1.7	2.2	2.6	2.7	3.3	4.0
5 Years	2.1	2.6	3.3	3.5	4.3	5.1
10 Years	2.3	2.9	3.7	4.1	4.7	6.5
25 Years	2.7	3.4	4.2	4.7	5.8	6.9

＊U．S．Weather Bureau Technical Paper No． 40 －＂Rainfall Frequency Atlas of the United States＂．

Charleston, S. C. The average yearly rainfall of 47.04 inches would not cause a serious drainage problem if it were evenly distributed. The most serious drainage problem is created by the high intensity, short duration rain storms occurring during periods of high tides and prevailing easterly winds. The design of drainage systems and supporting structures is related to the amount of runoff that can be expected from storms of differing intensities and duration.

ROAD FLOODED--Heavy rains flooded sections of Magnolia Garden Road. Adequate outlets would have carried off this excess water.

PLOODED SUBDIVISION - With disruption of utilities and property damage.

Soils

A description of soil groups in Charleston County is contained on pages 13-17. Table No. 2 contains information relative to the engineering and other properties of soils.

Soils have characteristics which decidely influence the need for, and the degree of, drainage. Some of the more important characteristics are: the rate of water movement through the soil (permeability), soil texture, water table depth, and slope of the land. A knowledge of these characteristics as well as of the engineering properties of soils is essential in planning, designing and constructing an adequate drainage system.

Heavy textured soils have little or no subsurface water movement and can be drained only by positive removal of surface water by shallow surface ditches. Sandy soils having high water tables or fluctuating water tables, respond to sub-surface drainage, but present problems in stabilization and design of open ditches. These problems include: (a) side slope sloughing, which limits the depth of cuts; (b) limitation of the velocity of flow; and (c) sedimentation.

Culverts

Culverts for road and railroad drainage generally lack capacity to handle runoff from high intensity storms and are frequently installed with invert elevations too high. They are a serious bottleneck to the rapid disposal of runoff and cause local flooding. The problem is less severe on primary roads than on secondary roads. Culverts are almost universally inadequate on unpaved and farm roads.

Drainage structures in driveways paralleling streets and roads in established subdivisions are critical factors contributing to poor local drainage. Head losses alone resulting from the wide spread use of under-designed culverts in residential areas create local flooding problems.

Urbanization

Urbanization of areas adjacent to the City of Charleston is having an adverse effect on drainage. Some of the drainage facilities now in use were established to handle the agricultural needs of the area. They are not adequate to handle runoff resulting from urbanization. Roof tops, paved roads, compaction, raised water tables resulting from septic tanks and tile field installations, grading and elimination of some ditches during urban development, have created conditions approaching 100 percent runoff. As urbanization continues, the present drainage facilities will become increasingly inadequate to handle runoff. However, there has been a marked improvement in recent drainage work due to enactment of Subdivision Regulations which include criteria governing the installation of drainage facilities.

FLOODED SUBDIVISION - Prohibits use of streets and prevents operation of septic tanks.

Table No. 2 Brief Description of Soils and Their

Map Symbol (1)	Soll Name - Typical of Soll Group (2)	Description of Soil and Site (A) (3)	Depth from Surface Inches (4)
θ	Bayboro loan	One foot of very poorly drained loam over 2 to 4 feet of plastic sandy clay loam derived from beds of sandy clay. Internal drainage very slow. Seasonal high water table at depth of 4 ft . With perched water table at or near the surface.	$\begin{array}{r} 0-19 \\ 19-35 \\ 35-52 \\ \hline \end{array}$
θ	Bladen fine sandy loam, neutral aubstratum	One foot of poorly drained fine sandy loam over 2 to 4 feet of plastic sandy clay loam derived from beds of sandy $c l a y$ and sand. Perched water table on or near the surface with true water table at 4 ft . below the surface.	$\begin{array}{r} 0-15 \\ 15-34 \\ 34-54 \\ \hline \end{array}$
4	Charleston fine sandy loam	1 to $1 \frac{1}{\frac{1}{2}}$ feet of moderately well drained fine sandy loam overlying 2 to 3 ft . of fine sandy loam derived from beds of sandy clay and sand. Seasonal high water table located 2 ft . below the surface.	$\begin{array}{r} 0-18 \\ 16-44 \\ 44-52 \end{array}$
7	Chewacla-Wehadkee silty clay loams	One foot of silty clay loam underlain by $1 \frac{1}{2}$ ft. of silty clay derived from beds of unconsolidated silty clay deposited by streams.	$\begin{aligned} & 0-8 \\ & 8-24 \end{aligned}$
5	Edisto fine sandy loam	1 to $1 \frac{1}{k}$ feet of somewhat poorly drained fine sandy loam overlying 2 to 3 ft . of sandy loam to sandy clay loam derived from beds of sandy clay and sand. Seasonal high water table at depth of 1 ft . below the surface.	$\begin{gathered} 0-15 \\ 15-38 \\ 38-45 \end{gathered}$
4	Eulonia loamy fine sand O to 2 percent slopes	1 to lif feet of moderately well drained loamy sand over 2 to 3 ft . of sandy clay loam derived from beds of sandy clay. Seasonal perched high water table at depth of 1.0 foot below the surface, true water table below 4 ft .	$\begin{array}{r} 0-13 \\ 13-29 \\ 29-40 \\ \hline \end{array}$
4	```Eulonia loamy fine sand, thick surface, 2 to & percent slopes```	ld to $2 \frac{1}{\frac{1}{2}}$ feet of moderately well drained loany sand on 2 to 8 percent slopes over 2 to 3 ft . of sandy clay loan derived from beds of sandy clay. Seaaonal high water table at depth of 2 ft . below the surface.	$\begin{array}{r} 0-28 \\ 28-40 \end{array}$
1	Eustis loamy fine sand, low, O to 6 percent siopes	3 to 15 feet of excessively drained sand formed in beds of unconsolidated sands. Seasonal high water table at depth of in excess of 5 ft . below the surface.	$\begin{gathered} 0-8 \\ 8-48 \\ 48-80 \end{gathered}$
1	Eustis loamy fine sand, low 6 to 10 percent slopes	3 to 15 feet of excessively drained sand formed in beds of unconsolidated sand on 6 to 10 percent slopes.	$\begin{gathered} 0-8 \\ 8-48 \\ 48-80 \end{gathered}$
4	Fairhope fine sandy loam 2 to 6 percent slopes, eroded	$1 / 2$ to 1 ft . of well drained flne sandy 10 am , eroded, over $1 \frac{1}{d}$ to 3 ft . of sandy clay loam derived from beda of sandy clay. Seasonal high water table at depth in excess of 4 ft . below the surface.	$\begin{gathered} 0-7 \\ 7-26 \\ 28-35 \end{gathered}$
2	Klawah loamy fine sand	3 to 5 feet of somewhat poorly drained loamy sand over beds of sand or sandy clay. Seasonal high water table at depth of 1 ft . below the surface.	$\begin{gathered} 0-15 \\ 15-32 \\ 32=40 \end{gathered}$
3	Rutlege loamy sand	1 to $1 \frac{1}{p}$ feet of poorly drained loamy sand over 1 to 2 ft . of sand derived from beds of unconsolidated sand.	$\begin{array}{r} 0-12 \\ 12-28 \\ \hline \end{array}$
2	Rutleǵe loamy fine sand, thick surface	1 to 2 feet of poorly drained loamy sand, high in organic matter over 2 to 3 ft . of sand. Seasonal high water table on or near the surface.	$\begin{gathered} 0-20 \\ 20-42 \\ 42-54 \end{gathered}$
3	St. Johna loamy fine and	1 to $1 \frac{1}{6}$ feet of poorly drained loamy sand over $8^{\prime \prime}$ to $12^{\prime \prime}$ thick hardpan of aand cemented with organic material underlain by 4 to 7 ft . of sand. Seaaonal high water table on or near the surface.	$\begin{array}{r} 0-13 \\ 13-35 \\ 35-53 \end{array}$
1	Seabrook loamy fine sand	3 to 5 ft . of moderately well drained sand formed in beds of unconsolidated aand. Seasonal high water table at depth of 2 f f. below the surface.	$\begin{gathered} 0-9 \\ 9-42 \\ 42-54 \end{gathered}$
θ	Stono fine aandy loam	1 to $1 \frac{1}{d} \mathrm{ft}$. of poorly drained fine sandy loam, high in organic matter, over 2 to $2 \frac{1}{6} \mathrm{ft}$. of sandy loam to sandy clay loam derived from beda of sandy clay and aand, Seasonal hish water table on or near the aurface.	$\begin{array}{r} 0-20 \\ 20-42 \\ 42-50 \\ \hline \end{array}$
5	Weaton fine sandy loam	```l to 1\frac{1}{0}}\textrm{ft}\mathrm{ . of somewhat poorly to poorly drained fine sandy loam over 2 to 2l of aandy clay loam derived from beds of aandy clay. Seasonal high water table 1/2 ft. below the surface.```	$\begin{gathered} 0-8 \\ 8-48 \\ 48-54 \end{gathered}$

(A) Wet Weather Water Table:

High - 0 to 18 inches below ground Moderate - 18 to 36 inches below ground Low - 38+inches below ground
(B) Permeability Rate Rangea:

Very slowly permeable - lesa than . 083 inch an hour
Slowly permeable -. .083 to 0.2 inch an hour
Moderately alowly permeable -. 2 to 0.03 inch an hour
$\begin{array}{ll}\text { Moderately alowly permeable - } \\ \text { Moderately permeable } & 0.03 \text { to } 2.0 \text { inches an hour }\end{array}$
$\begin{array}{ll}\text { Roderately permeable } & -2.0 \text { to } 6.3 \text { inches an hour } \\ \text { Raply permeable } & -2.0\end{array}$ Very rapidly permeable - greater than 6.3 inches an hour

Estimated Properties Significant to Engineering

Cl assification			Percentage Passing Sleve			```Permeabllity Rate (B) In. per Hr. (11)```	```Avallable Water Capacity In. per In. .(12)```	Reaction (pH Value;(13)	Dispersion (14)	Shrink-Swell Potential (15)
USDA Texture (5)	$\begin{gathered} \text { Unified } \\ \text { (8) } \end{gathered}$	AASHO (7)	No. 4 (8)	No. 10 (9)	No. 200 (10)					
Loam	ML	A-4	100	100	57	. $20-0.8$. 200	5.1-5.5	Low	Moderate
Fine sandy clay loam	SC	A-4 or A-6	100	100	49	. $083-0.2$. 250	$5.1-5.5$	Low	Low to moderate
Fine sandy clay loam	SC	A-4 or A-B	100	100	48	. $083-0.2$. 170	5.1-5.5	Low	Low to moderate
Fine sandy loan	SM	$\mathrm{A}-2$ or $\mathrm{A}-4$	100	100	29	. 83 - 2.0	. 180	$5.1-5.5$	Hish	Low
Fine sandy clay loam	SC	A-4 or A-6	100	100	43	. $083-0.2$. 170	6.6-7.3	Moderate	Low to moderate
Fine sandy clay loam	SC	A-4 or A-8	100	100	38	. 083 - 0.2	. 170	$6.8-7.3$	High	Low to moderate
Fine sandy loam	SM	A-2 or A-4	100	100	31	.83-2.0	. 130	$5.8-8.0$	High	Low
Fine sandy loam	SM	A-2 or A-4	100	100	36	. $83-2.0$. 110	4.5-5.0	High	Low
Fine sandy loam	SM	A-2 or $A=4$	100	100	28	. $63-2.0$. 110	5.1-5.5	High	Low
Silty clay loam	MH or CL	A-7 or A-5	100	100	90	. 083 - 0.2	. 100	5.8-6.0	Moderate	Moderate
Silty clay	CL	A-7 or $\mathrm{A}-6$	100	100	95	. $063-0.2$. 125	$5.8-8.0$	Low	Hín
Fine sandy loam	SM	A-2 or A-4	100	100	38	. $63-2.0$. 130	$5.1-5.5$	High	Low
Fine sandy loam	SM	A-2 or A-4	100	100	43	. $83-2.0$. 110	$4.5-5.0$	Moderate	Low
Fine sandy loam	SM	A-2 or A-4	100	100	42	. $63-2.0$. 110	4.5-5.0	Moderate	Low
Loamy fire sand	SP-SM	A-2 or A-3	100	100	42	. $83-2.0$. 107	5.1-5.5	Moderate	Low
Fine sandy clay loam	SM	A-2 or A-4	100	100	46	$.20-.83$. 180	$4.5-5.0$	Low	Low to moderate
Fine sandy clay loam	SM	A-2 or A-4	100	100	28	$.20-.83$. 180	4.5-5.0	High	Low to moderate
Loamy fine sand	SM	A-2 or A-4	100	100	28	. $83-2.0$. 080	$5.1-5.5$	High	Low
Fine sandy clay loam	SC	A-4 or A-8	100	100	40	$.20-.83$. 180	4.5-5.0	Moderate	Low to moderate
Loamy fine sand	SM	A-2 or A-4	100	100	16	6. $3+$.078	8.1-8.5	High	Low
Loamy fine sand	SP-SM	$\mathrm{A}-2$ or $\mathrm{A}-3$	100	100	12	6. $3+$.077	6.1-8.5	High	Low
Fine sand	SP	A-3	100	100	20	6. $3+$. 077	6.1-8.5	High	Low
Loamy fine sand	SM	A-2 or A-4	100	100	18	8.3+	. 080	0.1-0.5	High	Low
Loamy fine sand	SP-SM	A-2 or A-3	100	100	12	6.3+	. 050	$8.1-8.5$	Hish	Low
Fine sand	SP	A-3	100	100	20	6. 3+	. 050	6.1-6.5	High	Low
Fine sandy loam	ML	A-2 or A-4	100	100	54	. $83-2.0$. 180	5.8-6.0	Low	Low
Fine sandy clay loam	Sc	A-4 or A-8	100	100	48	$.20-.83$. 180	$4.5-5.0$	Low	Low to moderate
Fine sandy clay loam	SC	A-4 or $A-8$	100	100	28	$.20-.63$. 180	$4.5-5.0$	Hi $\mathrm{h}^{\text {h }}$	Low to moderate
Loamy fine sand	SM	$A-2$ or A-4	93	93	23	2.0-6.3	. 100	5.8-8.0	High	Low
Loamy fine sand	SM	A-2 or A-4	93	93	17	8. $3+$. 080	5.6-8.0	High	Low
Fine sand	SP.	A-3	100	100	15	6. $3+$. 077	$5.8-8.0$	High	Low
Loamy sand	SM	A-2 or A-4	100	100	45	. $830-2.0$. 125	$5.1-5.5$	High	Low
Sand	SM	A-2 or A-4	100	100	30	$2.0-6.3$. 077	$5.1-5.5$	High	Low
Loamy fine sand	SM	A-2 or A-4	100	100	23	. $83-2.0$. 180	5.1-5.5	High	Low
Loamy fine sand	SM	A-2 or A-4	100	100	19	6. $3+$. 107	$5.1-5.5$	High	Low
Loamy fine sand	SM	$\mathrm{A}-2$ or $\mathrm{A}-4$	100	100	24	0. 3+	. 077	5.1-5.5	High	Low
Loamy fine sand	SM	A-2 or A-4	100	100	30	$6.3+$. 080	$4.5-5.0$	High	Low
```Fine sand (weakly cemented)```	SP	A-3	100	100	21	. $83-2.0$	. 077	4.5-5.0	High	Low
Fine sand	SP	A-3	100	100	19	$2.0-8.3$	. 077	$5.1-5.5$	High	Low
Loamy fine sand	SM	A-2 or A-4	100	100	28	6.3+	. 100	5.8-8.0	High	Low
Loamy fine sand	SM	A-2 or A-4	98	98	23	8. $3+$	. 075	$5.1-5.5$	High	Low
Loamy fine sand	SM	A-2 or A-4	100	100	22	8. $3+$	. 075	5.1-5.5	High	Low
Fine sandy loam	SM	A-2 or A-4	100	100	44	. $83-2.0$	. 180	4.5-5.0	Moderate	Low
Fine sandy clay loam	SC-SM	A-2 or A-4	98	94	40	. $83-2.0$	. 170	$5.6-6.0$	Moderate	Low
Loamy fine sand	SM	A-2 or A-4	100	100	24	$2.0-8.3$	. 075	5.8-6.0	High	Low
Fine sandy loam	SM	A-2 or A-4	100	100	23	. $63-2.0$	. 110	5.6-6.0	High	Low
Fine sandy clay loam	SC	A-4 or A-8	100	100	41	$.20-.83$	. 170	8. 1 - 6.5	Moderate	Low to moderate
Fine sandy loam	SM	A-2 or A-4	100	100	28	. $83-2.0$	. 130	8.8-7.3	High	Low

## Existing Drainage System

With the exception of some recently excavated canals, drainage systems in rural and urban areas are generally inadequate in depth and capacity, and have very flat grades. An important additional factor contributing to this problem is the lack of legal authority to secure adequate rights-of-way for proper ditch design, spoil management, and access for maintenance. Rights-of-way in the past were usually limited to the width which the landowner was willing to donate, which in most cases was less than thirty feet.

Existing flat grades are the result of discharging canals - (1) into tidal marshes at Mean Sea Level Elevation rather than at Mean Low Water Elevation, or (2) discharging into swamps which are not adequate outlets in their present state since they generally pond water for long periods of time following heavy rainfall.

Existing canals are usually located in natural water courses. However, in many instances alignment is poor, since attempts were made to accomodate the canals to existing property lines or other physical features inconsistent with good channel flow conditions.

## Maintenance

Lack of adequate maintenance is a factor affecting the capacity of canals. The existing drainage canals in most of the county were dug by hand many years ago; some of them were enlarged by the Works Progress Administration in the 1930's.
They have nearly vertical side slopes, with spoil placed immediately next to the ditch. Practically all canals have high spoil banks which are covered by heavy growth of trees and brush, making access very difficult. The spoil banks' being continuous for long distances prevents surface drainage from adjacent areas and results in ponding. The extent of machine maintenance is limited at preent due to these conditions and also to the lack of legal easements permitting access.

## Drainage Principles

The purpose of this report is to present a plan for the location and needed capacities of main drainage canals. This is, however, only the first step in the establishment of a complete drainage system. Drainage systems are divided into two broad categories - surface drainage and sub-surface drainage.

Surface Drainage - removes excess water, by gravity, from the land surface to an outlet. Surface water can best be moved by shallow channels or by grading the land surface to a uniform slope primarily on cultivated land. To insure water movement along the surface to an outlet without ponding is a very important function of the drainage system. Surface drainage facilities are particularily applicable to soils having slow permeability rates, to the drainage of low pockets to prevent water from ponding, and to the diversion of water from protected areas. They also collect and convey water to natural channels or to constructed canals.

Sub-surface Drainage - removes water from beneath the surface of the soil by facilities which create a difference in hydraulic head. The resulting hydraulic head causes water to move through the soil to an outlet. Sub-surface drainage may be accomplished by open ditch drains or by tile drains. Open ditch drains have an added advantage because they can also collect and remove surface water. Tile drains, with certain precautions, can also remove surface water by simulating a small storm sewer system.

The purpose of sub-surface drainage is to lower the water table to a point where it will not interfere with plant growth or the use of land for residential or other purposes. The minimum depth below the surface at which water tables should be maintained depends on the use of the land. Water tables, fluctuating upwards to or near the surface, may not be as great a problem in agricultural areas as they would be in populated areas.

The component parts of a Drainage System are as follows:
The Collection Systeri - is that part of the drainage system which first picks up water from the land. It may consist of shallow trapezoidal ditches, having flat side slopes; V- or W-type ditches, bedding or grading the land surface in open agricultural areas, or storm sewers in urban areas. This is a part of the drainage system which cannot be neglected if the system is to perform adequately.

The Disposal Syster! - receives water from the collection system and conveys it, usually in an open channe1, to the outlet. Generally, this report concerns itself with this part of the drainage system.

The Outlet - is the end point of any segment of a drainage system beyond which the ditch, storm sewer, or the system no longer guides or controls the water it discharges.

## Drainage Requirements

The drainage system should be designed so that flooding will not occur in critical parts of the watershed for a period of time sufficient to cause damage or disrupt utilities and services. For urban areas, design should provide for the removal of runoff from the design storm with a minimum of flooding. In agricultural areas, the degree of protection required by crops varies considerably, depending on their tolerance to the amount and duration of excess water. Truck crops are the most susceptible to excess surface water, with damage occurring to some when flooded for the relatively short period of 24 hours or less. General crops such as corn and grain are less susceptible, with pasture being the least subject to water damage. Woodland areas are not appreciably damaged by flooding for prolonged periods, except that seed-fall may not germinate due to surface water conditions, causing failure in securing a stand.

Poorly drained soils adversely affect the use of the land for most purposes. On agricultural


FLOODED FIELD - This field of cucumbers was flooded for the second time in a month because of lack of proder drainage.
land, high water tables restrict root penetration; soil temperature is lowered, air circulation is severely limited, dependent on the degree of soil saturation, and soil structure is adversely affected. Wet spots in the field delay farm operations and shorten the growing season.
Poorly drained soils in residential areas, in addition to their effects on ornamental plants and lawns, adversely affect the construction, maintenance, and use of roads and streets. They also limit or prohibit the development of some areas, preventing the proper functioning of septic tank tile ficlds, and contribute to health hazards.

## Design Criteria

The design of drainage systems and supporting structures is based on Hydrology and Hydraulics and this report will limit itself to the application of these sciences as they apply to the solution of such problems. References for more detailed information on design of open channels, closed conduits, culverts, dikes, pumps, tide gates, and other engineering structures ultimately involved in establishing a drainage system are listed on pages 23 - 54.

## Drainage Coefficients

The drainage coefficient is the rate of removal of runoff to provide a specific degree of drainage protection to an area. Land use, soils, topography, and rainfall intensities and duration determine the selection of drainage coefficients. A series of four curves have been developed from which required drainage capacities of open ditches can be computed, dependent on the land use. (See Figure No. 1) The highest curve is for urban use followed in descending order for truck crops, general crops, and woodland.

The use of these curves provides for the removal, in 24 hours time, of the following amounts of runoff:

| Urban curve | -4.39 inches |
| :--- | :--- | :--- |
| Truck crops | -3.33 inches |
| General crops | -1.67 inches |
| Woodland | -0.37 inches |

The curve for urban areas reflects a peak runoff for a 10 -year frequency.

## Velocity

Soil characteristics, the shape of the channel, and available means for stabilization of the soil after construction, determine the maximum safe velocity. The optimum velocity for channels, based on soil conditions in Charleston County, is approximately 2 feet per second. The soils are predominently fine sands. Sedimentation occurs when velocities are less than $1 \frac{1}{2}$ feet per second which is frequently caused by vegetative growth. Erosion will occur in most soils at velocities in excess of 3 feet per second. Design of channels in the fine water bearing sands must consider the need for checking erosion and bank caving that will occur immediately following construction when water tables are high.

Velocities should be designed after a thorough investigation of soil conditions to the depth of proposed channels.

## Channel Cross Section

Values of Roughness Coefficient "n"
All channel cross sections were computed by use of Manning's formula for determining velocities. This is:

$$
V=\frac{1.486}{n} \times r^{2 / 3} \times s^{1 / 2}
$$

where: $n=$ Roughness coefficient.
r = Hydraulic radius
$s=$ Slope in feet per foot along the ditch.
The proper design of a ditch cross section required the selection of the proper value of " $n$ ". Side slopes of the ditch as well as depth and allowable velocities are fixed primarily by soil conditions and proposed maintenance methods.

The following tabulations were used for selection of values or " n " for Manning's formula in the design of main canals with good alignment:

Hydraulic Radius*	" n "
	less than 2.5
2.5 to 4.0	.045
4.0 to 5.0	.040
over 5.0	.035

* The hydraulic radius is obtained by dividing the proposed area of a channel cross section by its wetted perimeter.


Figure No. 1 - Drainage Coefficient Curves


In newly dug channels, roughness is lower and velocities higher. A realistic roughness coefficient was selected anticipating flow retardance features, such as vegetative growth and sediment several years after construction. Where the design velocity was near an erosive value, corrective measures were planned.

## Channel Depth and Width

Depth of channel was an important design consideration. The channel must be deep enough to tap and provide for the escape of ground water, and to provide for the safe entrance of the longer lateral ditches and tile drains. Other considerations favoring a deeper channel with a resulting narrower bottom width are: less right-of-way is required, vegetative growth on the wetted perimeter is reduced, and conditions are less favorable for the formation of sand bars. All these impede the flow of water. A channel roughly as deep as its bottom width - within economic limits - will remain effective for a longer period because it has the most favorable hydraulic characteristics.

A minimum bottom width of 3.0 feet was designed for main channels, which conforms to a bucket width of small dragline excavating equipment. Bottom widths were selected as narrow as design and construction criteria would permit, so as to obtain higher velocities which, in many instances due to low gradients, were not high enough to prevent formation of sediment islands and growth of vegetation in channel bottoms.

## Side Slopes

Maintenance methods, soil characteristics, and a need for adequate but economic minimum rights-of-way determined the side slopes of channels. Side slopes of 1 to 1 for main channels were used to satisfy these conditions.

Sloughing of side slopes may be expected, immediately after excavation in fine sands having high water tables. Sloughing will continue until the water table becomes established at the lower
level. The problem can be controlled somewhat in wide channels by requiring initial construction of a pilot channel to lower the water table followed by final construction when the channel has been stabilized; or by requiring a maintenance operation to restore design cross section soon after the channel has stabilized.

## Design at Culverts

Culberts obstruct the flow of water in ditches and cause a loss in head. This was considered in designing main channels. The hydraulic gradient was set low enough so that the profile of the water surface at the culvert during design flow was well within the channel cross section in all critical areas.

In Areas 1, 2, and 3, which are relatively highly developed urban areas, the formula: $\mathrm{Q}=\mathrm{AC} \sqrt{2 \mathrm{gh}}$ (where " C " is the total significant loss coefficient), was generally used in determining culvert sizes with allowable head ("h") not exceeding 1.5 feet. This head did not result in excessive tail velocities.

In the remaining areas, Talbot's formula was used in determining culvert sizes, at the sugges tion of the Charleston County Public Works Department, since it is their policy and the policy of the South Carolina State Highway Department to use this formula in culvert design.

Where culvert sizes exceeded 66 inches in diameter, it was found more economical to use 15-foot precast reinforced concrete bridges.

## Right-of-way Requirement Berm Width, Spoil Bank

Factors governing widths of rights-of-way can best be understood by consulting Figure No. 2.

Figure No. 2 - Typical Main Ditch Cross-Sectian Showing Basis For Determining Right-Of-Way Width


The principal requirements for berm width include a work area for spoil shaping so as to prevent erosion or spoil material into the canal, provide a means for travel by maintenance equipment, and reduce the load near the edge of ditch banks to prevent sloughing. Where unstable soil conditions will require it, and the problem of securing wide easements is not a factor, a 15 foot berm width is optimum. Narrower berm widths are feasible where the spoil is to be shaped and a roadway established on top of the spoil.

## Dikes, Conduits and Pumps Needs and Location

An integral feature of the water disposal plan is the establishment of dikes across tidal inlets at selected sites to control tide water intrusion into the major outlets, and provide a basin behind the dike for runoff storage during periods of high tides and high intensity rainfall. Where the capacity of the storage basin is sufficient to store runoff water during a short duration storm occurring at high tide, the runoff water can be discharged during the low tide cycle through conduits equipped with tide gates or through a low gravity flow section through the pump structure. However, where the storage is limited, the storms prolonged, and prevailing winds result in a relatively high tide level, pumps will be required to maintain a safe level of water in the storage basin to prevent damage in highly developed residential or truck crop areas.
The combination of dikes, tide gates, and pumps will provide protection during times when the drainage canals cannot discharge by gravity. These conditions occur frequently enough to justify costs. It is during these times that extensive property and crop damage occurs, usually with resultant disruption of public facilities. (See Figures 3 and 4)

## Design Criteria

Available records indicate that average storm tides (excluding hurricane tides) occur at 8.0 feet above mean low water. Design of dikes, with top elevation of 10.0 feet above mean low water, $3: 1$ side slopes and 12.0 -foot top width, is considered a minimum requirement for adequate protection.
Pumping lift, topography, and foundation conditions are factors which influenced the location of pumps. The axial flow or propeller-type pump was used in determining costs since it is especially adapted for low head pumping.
In most cases two pumps were planned for each installation with each pump having one-half the total needed capacity. Adequate trash racks, suction bays, discharge bays and low-flow gravity chambers were planned.

Reinforced concrete structures for pumps, gates, conduits and trash racks are planned to be located at abutment ends of dikes where good foundation conditions exist. Pumps were planned at an elevation sufficient for protection from inundation during abnormally high tides. Locations were also planned for ease of access and maintenance. (See Figures 3 and 4)


## Description of Areas

The County was divided into twelve Areas to delineate the drainage needs peculiar to these Areas and to facilitate planning. A brief description of drainage problems associated with each Area follows. (See Figure 5)

## Area 1 - James Island

A rapid change from agricultural to urban use is taking place on James Island. It is a trend that is expected to continue. The existing drainage on James Island was installed to take care of the agricultural needs of the Island and not for urban development. There is an opportunity on James Island to install adequate drainage facilities and related engineering structures before the Island becomes totally urbanized. This work can now be accomplished at less cost and with a minimum of difficulty in acquiring rights-of-way. Encroachment of developments on areas exposed to storm tides makes special protective measures such as dikes, tide gates, and pumps, necessary. James Island has a higher proportion of well drained high land than the other Areas in the County.

## Area 2-St. Andrews

This area is largely residential and is almost totally occupied by residential subdivisions and large commercial centers, with undeveloped, very poorly drained sections scattered throughout the area. Most of St. Andrews was highly developed prior to enactment of Subdivision Regulations which include criteria for drainage design. The drainage problem in St. Andrews is very severe. Flooding occurs very frequently, causing a good deal of damage to property and disrupting of utilities. The existing drainage systems were poorly planned and under designed. They were established as a means of expediency in an

Figure No. 3 - Typical Profile and Cross-Section - Dike and Pump Structure


Figure No. 4 - Plan View Showing Typical Installation of Dike R/C Pump Structure - Tide Gate and Channels

attempt to keep up with rapid urbanization. Drainage is further complicated by drainage structures under railroads, highways, and numerous inter-connecting roads and streets. The establishment of adequate drainage in this area will be very expensive, due to the cost of right-of-way acquisition through thickly settled residential areas and commercial centers. Encroachment of developments on areas exposed to storm tides and expected use of poorly drained sections, makes special protective measures such as tide gates, dikes, and pumps necessary.

## Area 3 -North Charleston - Ladson

For the most part, this Area is totally occupied by residential developments, industrial centers, railway yards, Federal installations (Navy Yard, Air Base, and other defense installations) and large commercial centers. Most of this Area was developed prior to enactment of Subdivision Regulations governing installation of drainage facilities. The highest elevation in the county, 70 feet above mean sea level, occurs in the Lincolnville section.

This Area has the most complicated drainage problem in the County. The existing drainage system was established with inadequate allowance for eventual developments. Drainage structures for main line railroads and spur tracks, principal highways and inter-connecting roads and streets complicate and impede drainage in many instances. Underground storm drains in commercial and residential areas are inadequate to handle runoff, which results in frequent flooding. Numerous underground facilities such as gas lines, electric cables, water mains and sewage lines further complicate the problem. This highly concentrated area is confined in a relatively narrow section between the Ashley and Cooper Rivers. Drainage improvements will be very expensive due to the high cost of right-of-way acquisition through existing developments. Encroachment of developments on areas exposed to storm tides also makes special protective measures such as dikes, tide gates, and pumps necessary.

## Area 4 - Johns Island

Johns Island is largely agricultural, with residential developments beginning to take place along the Maybank Highway and the River Road. It is expected that in time, large sections of Johns Island will become urbanized, and plans for drainage should anticipate this eventual development.

The soils on Johns Island are generally poorly drained, with relatively high water tables. The better drained soils occur along the roads and highways and along tidal creeks. The topography is very undulating, with the intervening low places between ridges being very wet and swampy. Generally, the watersheds are larger than those in other areas.

## Area 5 - Mt. Pleasant . Awendaw

This area is divided into broad topographical sections. The section nearest the City of

Charleston is urbanized and can be expected to expand north along Highway 17 and onto the remaining farm land north of Mt. Pleasant. The portion in the vicinity of Awendaw is rural some of it is contained within the U. S. National Forest.
U. S. Highway 17 is generally located along the watershed divide between the Inland Waterway and the Wando River. The existing drainage facilities are generally well located, but inadequate as to capacity and depth. The soils range from moderately well drained along U. S. Highway 17 and the vicinity of Mt. Pleasant to poorly drained in the remainder of the Area.

As urbanization continues in the Mt. Pleasant section, the need for drainage improvements will become more and more critical. These improvements should anticipate expected developments which can now be established without too much difficulty and at a reasonable cost.

## Area 6 - Meggett - Hollywood

This Area contains the highest concentration of truck farms in the county and is entirely agricultural. Good drainage is essential to the production of truck crops. Most truck farms are located along tidal creeks, south of Highway 162 where better drained soils, well suited to truck crops, are found and where outlets into tidal creeks are readily available. Farms not so located require main drains to tidewater for disposal of runoff.

The section north of Highway 162 is not generally suited for agriculture, due to soil characteristics and very poor drainage. The topography is flat, with large depressions which pond water.

Drainage in Area 6 is somewhat complicated by railroad spur lines that serve individual farms, and by numerous interconnecting paved and unpaved roads that serve the Area. The proximity of truck farms to areas exposed to storm tides makes special protective measures such as dykes, tide gates and pumps necessary.

## Areas 7 and 8 - <br> Wadmalaw Island and Edisto Island

The interior of these Areas is largely woodland with truck farms located along tidal creeks and rivers. The soils are moderately to poorly drained, with the better drained soil occurring along the principal roads and creeks. The drainage problems here are not severe as compared to other Areas. The watersheds are relatively small in size and adequate outlets are readily available.

## Area 9-Mc Clellan ville

Most of this area is contained within the U. S. National Forest with random farms and small holdings along U. S. Highway 17 and within the National Forest. This area has large watersheds, extending into adjacent Berkeley County, and their drainage is to the Santee River and to the Inland Waterway. The topography is flat, with broad swamps having poorly defined drainage patterns. This section is the most poorly drained of all the Areas in the County. Drainage re-
quirements of woodland are minimum, and since the Federal Government is the principal owner, it is expected that drainage facilities within the National Forest will be installed by them, in cooperation with private landowners, as needed.

## Area 10 - Parkers Ferry

This Area is entirely woodland with ownership vested in a Pulp and Paper Company and other private owners. The soils are poorly to very poorly drained except areas along the Edisto River. This Area receives runoff water from Areas 6 and 12 and the drainage plan is coordinated with these Areas. The Edisto River forms a readily available outlet for drainage systems. The drainage requirements are minimum, due to the land use.

## Area 11-Bear Swamp

This Area is woodland, with large private owners. A large part of this Area was stripmined for phosphate and is characterized by a corrugated pattern of ridges and depressions resulting from the mining operation. The natural drainage in the mined section has been totally disrupted. Church Creek and the Ashley River are the natural outlets.

## Area 12-Caw Caw Swamp

This Area is owned for the most part by a Paper and Pulp Company. Considerable drainage facilities have been installed by the company for access and management. These facilities, with some additions, are considered adequate for the anticipated land use for this Area. The Area is characterized by broad swamps with large watersheds eminating from Dorchester County and discharging into the Wallace River, Caw-Caw Swamp, or the Edisto River. The soils are poorly drained and are generally low in elevation, which results in frequent flooding. The better drained soils occur along the Edisto River and along the Dorchester County line.


Reconnaisance Soil Survey

## Description of Soil Groups and Their Drainage Problems

Soil surveys in Charleston County are classified into Detailed and Reconnaissance Surveys according to the method and resulting precision of mapping. A Detailed Soil Survey is one in which the location of each soil boundary plotted on a map is observed at moderate intervals throughout its course. A Reconnaissance Soil Survey is one in which the boundaries between soils are sketched from observations made at very wide intervals and not necessarily throughout their whole course. A recconnaissance soil survey boundary encloses several kinds of soils whereas a detail survey boundary encloses but one kind of soil.

There are about 80 different soils in Charleston County. These soils have been placed in 14 soil groups in the Reconnaissance Soil Survey. Groups 1 to 7 contain soils that have well defined soil horizons. These soils have been grouped according to natural drainage class and texture of the subsoil. For example, Soil Group 1 contains soils that are we 11 drained and have deep sandy subsoils. Groups 8 - 14 are misce1laneous land types that do not have well defined soil horizons. These groups contain soils such as tidal marsh, dune land, or swamp. The soils in each group are listed in descending order of their total acreage in the group - that is, the first soil has a greater acreage than the second soil.

Each soil boundary shown on the Reconnaissance Soil Map usually contains one to three of the soils listed in the Soil Group description. Seldom does a boundary contain all the soils listed, except for the Soil Groups that have only one or two soils in them. Table No. 3 lists the acreage of each Soil Group that occurs in each Area.

## Soil Group 1 (Map Symbol 1)

Well Drained and Moderately Well Drained Soils with Loamy Sand to Sand Subsoils.

This group contains brown to brownish yellow, deep sandy soils that occupy nearly level to sloping relief. They are usually higher in elevation than the surrounding soils, are broadly distributed over the County and are extensive in area. These soils have few, if any, drainage problems. The water table is low and internal drainage is very rapid. They have low available water capacity, are low in organic matter and natural fertility. They are well suited for residential and industrial purposes and fair to poor for agricultural and recreational uses.

Soil Group 1 contains the following soils:
Eustis loamy fine sand, low, 0 to 6 percent slopes
Seabrook loamy fine sand
Eustis loamy fine sand, low, shallow, 0 to 2 percent slopes
Table No. 3 SUMMARY OF
SOIL GROUPS BY AREAS - IN ACRES
Based on Reconnaissance Soil Survey - Charleston County, S. C.

$\begin{gathered} \text { Area } \\ \text { No. } \end{gathered}$	SOIL GROUP													Total
	1	2	3	4	5	8	8	9	10	11	12	13	14	
1	6177	2113	38	894	1782	827	18,782		1464			89*	832	32,798
2	974	1016		3502	3302	1207	4859				98			14.756
3	6098	4836	110	7084	10,680	5970	3038			658	894	3983*		43,291
4	12,371	18,189	1904	2088	5797	3809	18,190		3413				1711	85,252
5	5202	13,509	355	3328	8207	7834	33.850		2708	81	1254		584	74,890
8	5654	8458	7493	4387	8445	7778	12.039	574		272				55,098
7	7837	8086	205	1860	3523	2711	9102			35				31,139
8	6718	9782	149	921	5408	1919	28.054		1078				1172	55,177
9	12,593	41.552	14,645	4444	16,233	13,237	10,884			13.372	34			128,994
10	2879	590	520	2589	1919	10,230	1356	2534		172				22,589
11	1490	1679		2253	2214	8281	4348	52		789	111	10,561		29,778
12	1795	2618	1449	5843	14.048.	21,270	1888			4351				53,240
Total	89,388	108,368	26,866	38,973	79,534	82,871	148,170	3160	8859	19,710	2389	14, 813	4299	804,800

* Includes a total of 551 acres of mine areas.

Lakeland sand, 0 to 6 percent slopes Ona loamy fine sand
Eustis loamy fine sand, low, shallow, 2 to 6 percent slopes
Eustis loamy fine sand, low, 6 to 10 percent slopes
Eustis loamy fine sand, low, shallow, 6 to 10 percent slopes
Lakeland sand, 6 to 10 percent slopes
Lakeland sand, shallow, 0 to 2 percent slopes Lakeland sand, shallow, 2 to 6 percent slopes Lakeland sand, shallow, 6 to 10 percent slopes

## Soil Group 2 (Map Symbol 2)

Somewhat Poorly to Poorly Drained Soils with Loamy Fine Sand to Sand Subsoils.

The soils in this group have dark gray to black, sandy surface soils, and grayish brown to gray, sandy subsoils, and occur at intermediate and lower elevations on nearly level relief. They are broadly distributed over the County and extensive in area. The water table is high during wet weather. Internal drainage is rapid when not impeded by the water table. They have a low to high organic matter content, and are low to moderate in natural fertility. They are productive for crops when properly drained and managed. Soils in this group require intensive drainage for any type of development. Ditch bank erosion and channel silting are major hazards.

Soil Group 2 contains the following soils: Kiawah loamy fine sand
Rutlege loamy fine sand, thick surface Kiawah loamy sand
Klej loamy fine sand
Scranton loamy sand
Klej loamy sand, terrace

## Soil Group 3 (Map Symbol 3)

Poorly Drained and Very Poorly Drained Soils with Sand Subsoils and Organic Hardpan Soils. The soils in this group have thin, black, sandy surface soils underlain by a gray sand subsoil. They occur on level relief and at lower elevations than surrounding soils. Often they are found along streams and waterways, and in broad, low, flat areas. They are broadly distributed over the County, and are extensive in area. Large areas are found in the northeastern part of the County, and to a lesser extent, in the southwestern part of the County. Two of the soils in this group have an organic hardpan in the subsoil. They are subject to frequent flooding and have a high water table most of the time. Internal drainage is moderate to slow because of the high water table with the hardpan soils having slow internal drainage. Organic matter content is low to high. Fertility is very low. The soils in this group are chiefly in woodland, and are very poorly suited for agriculture, residence, or industry.

The soils in this group are difficult to drain properly. They are unstable, and will present many problems in design and construction.

Soil Group 3 contains the following soils: Plummer fine sand St. Johris fine sand Rutlege loamy fine sand Rutlege fine sand Leon fine sand Plummer loamy sand, terrace

## Soil Group 4 (Map Symbol 4)

Well drained and Moderately Well Drained Soils with Sandy Loam to Sandy Clay Loam Subsoils.

The soils in this group have brown to grayish brown loamy fine sand to fine sandy loam surface soils. The subsoils are brown to yellowish brown fine sandy loam to fine sandy clay loam. They occur at intermediate elevations on nearly level relief. A few soils in this group occur on slightly steeper land. These soils are broadly distributed over the County, with the most extensive areas occurring between Charleston and the Edisto River. The water table is often deeper than four feet. A temporary perched water table occurs above the subsoil during wet weather. Internal drainage is moderate to slow. These soils are generally low in organic matter and low to moderate in fertility. The soils are well suited to a wide variety of uses, including agriculture, residence, recreation or industry.

Soils in this group require some drainage to remove surface water, and to lower the temporary, perched water table during wet weather. These soils are sufficiently stable to eliminate many of the design and construction hazards found in unstable soils.

Soil Group 4 contains the following soils: Eulonia loamy fine sand 0 to 2 percent slopes
Charleston fine sandy loam, 0 to 2 percent slopes
Charleston fine sandy loam, 2 to 6 percent slopes
Eulonia loamy fine sand, thick surface, 0 to 2 percent slopes
Fairhope fine sandy loam, 2 to 6 percent slopes
Eulonia loamy fine sand, 2 to 6 percent slopes
Fairhope fine sandy loam, 0 to 2 percent slopes
Eulonia loamy fine sand, thick surface, 2 to 6 percent slopes
Eulonia loamy fine sand, 2 to 6 percent slopes, eroded
Fairhope loamy sand, thick surface, 2 to 6 percent slopes
Farihope fine sandy loam, 6 to 10 percent slopes
Fairhope fine sandy loam, 2 to 6 percent slopes, eroded
Norfolk fine sandy loam, 0 to 2 percent slopes
Fairhope loamy sand, thick surface,
0 to 2 percent slopes
Norfolk loamy sand, thick surface, 0 to 2 percent slopes
Norfolk fine sandy loam, 2 to 6 percent slopes
Norfolk loamy sand, thick surface, 2 to 6 percent slopes

## Soil Group 5 (Map Symbol 5)

Somewhat Poorly Drained to Poorly Drained Soils with Sandy Loam to Sandy Clay Loam Subsoils.

This group includes soils having dark gray, fine sandy loam surface soils and grayish brown to gray fine sandy loam to fine sandy clay loam subsoils. They occupy low positions on nearly level relief. They are extensive in area, with most of the soils occurring in the area between the Wando and Edisto Rivers. The water table is high during wet weather. Internal drainage is moderate to slow. They have a moderate organic matter content and are moderate to low in natural fertility. Some of the most productive soils in the County are in this group.

The soils in this group require intensive drainage to remove excess water from the surface and subsurface, and to lower the water table for most uses. Intensity of use determines the intensity of drainage required. These soils are stable and should not present any major problems in drainage design, construction, and maintenance. When drained they are very good for agriculture and good to fair for residence, industry or recreation.

Soil Group 5 contains the following soils:
Edisto fine sandy loam
Weston fine sandy loam
Lynchburg sandy loam
Rains fine sandy loam
Wahee fine sandy loam
Izagora sandy loam
Dunbar sandy loam

## Soil Group 6 (Map Symbol 6)

Poorly Drained and Very Poorly Drained Soils with Plastic Sandy Clay Loam to Sandy Clay Subsoils.

This group includes soils having black to very dark gray fine sandy loam surface soil and a gray to dark gray, plastic fine sandy clay loam to fine sandy clay subsoil. They occur at low elevations on level relief. They often occur adjacent to streams and drainage ways. Flooding is frequent and internal drainage is slow. The water table is deeper than 3 feet. These soils have a perched water table at or near the surface most of the time. The organic matter content is medium to high and natural fertility is moderate. They are broadly distributed over the County with large acreages lying north of U. S. Highway 17 and between the Ashley and Edisto Rivers.

The soils in this group are difficult to drain because of location and slow internal drainage. However, some soils in this group can be economically drained for agricultural use, but have low potential for residence or industrial use.

Soil Group 6 contains the following soils:
Bladen fine sandy loam, neutral substratum
Bayboro loam
Bayboro clay loam
Meggett fine sandy loam
Bayboro fine sandy loam
Hyde loam
Meggett loam
Coxville sandy loam
Stono fine sandy loam

Bladen clay loam Bladen loam
Meggett clay loam
Bladen fine sandy loam
Hyde clay loam
Portsmouth fine sandy loam
Portsmouth loam

## Soil Group 7 (Map Symbol 7)

Poorly Drained and Very Poorly Drained Alluvial and Terrace Soils with Sandy Clay to Silty Clay Subsoils

The soils in this group have dark brown to dark gray silty clay loam to sandy loam surface soils, and gray sandy clay to silty clay subsoils. They occur on level relief, mostly along the Santee River. Flooding is frequent, and water stands on the surface much of the time. The water table is deeper than 3 feet. The present use is principally woodland. Some cleared areas, formerly used for rice production, have been developed for duck hunting. Soils in this group are very difficult to drain because of the flooding hazard and slow internal drainage.

Areas of this soil group are found on the Santee River bottoms but now are flooded by tidal waters. They have been mapped as Tidal Marsh, Group 8.
Soil Group 7 contains the following soils: Chewacla-Wehadkee silty clay loams Leaf fine sandy loam Myatt sandy loam

## Soil Group 8 (Map Symbol 8)

## Tida1 Marsh

The soils in this group have a black to gray, clayey surface soil and a dark gray to gray, clayey subsoil and are flooded by tide water. They occur on the lowest elevations in the County between the high and low tide levels on level relief, and include those areas covered by less frequent high tides. The water table is always high, and internal drainage is very slow. The soils in this group are broadly distributed in large acreages over the County. The organic matter content is low to medium, and fertility is low because of salt and sulphur in the soils. These soils cannot be used for woodland or agriculture because when drained, an extremely acid condition results, which kills all vegetation. Some areas can be developed for wildlife purposes. Other areas are suitable as sites for salt water ponds or flood water storage areas. They are unsuited for residential or industrial sites.

Soil Group 8 contains the following soils: Tidal Marsh, soft acid clays Tidal Marsh, firm acid clays Tidal Marsh, soft acid mucks and peats Tidal Marsh, firm acid mucks and peats

## Soil Group 9 (Map Symbol 9)

Fresh Water Marsh
The soils in this group usually have a thin to thick organic surface soil overlying mineral soil material that ranges from sand to clay. These soils are very poorly drained, are flooded continuously, and have slow internal drainage.
They occur along upper reaches of the rivers and
in inland areas and are not extensive in area. At one time, some areas of these soils were used for growing rice.

Soil Group 9 contains the following soils: Muck and peat, shallow
Fresh Water Marsh, firm clays Fresh Water Marsh, firm mucks and peats Fresh Water Marsh, soft

## Soil Group 10 (Map Symbol 10)

Dune land
The soils in this group are deep loose sands, with ridge and trough relief, occurring on long, narrow islands in the tidal marshes. A vegetative cover of trees, shrubs, and grasses covers these soils. The ridge sands are well drained and have a low water table and very rapid internal drainage. The trough sands are poorly drained and have a high water table and slow internal drainage during wet weather. Duneland occurs at low elevations, usually not over 10 feet above mean sea level, and can be subject to flooding by hurricane tides. Organic matter content and natural fertility are very low. If the ridges and troughs are leveled they have some potential for residential and recreational uses. Hurricane high tides are a hazard.

Stabilized duneland is the only soil in Soil Group 10.

## Soil Group 11 (Map Symbol 11)

Swamp
The soils in this group usually have a black surface soil, high in organic matter, and a gray subsoil ranging from sand to clay. They are level and occupy positions along streams and drainways. Flooding is frequent and a high water table and standing water are present most of the year. Drainage is very difficult and seldom feasible. The best use is woodland.

## Soil Group 12 (Map Symbol 12)

## Made Land

The soil materials in this group vary from sand to clay. They include materials that have been dug from marsh areas and deposited nearby. They also include low areas that have had fill material placed on them to raise the ground level. They occur in small areas broadly distributed over the County. The water table and internal drainage are variable in these soils. Organic matter content and fertility are very
low. On-site investigation is necessary to determine suitable uses for this group of soils.

Soil Group 12 contains the following soils:
Sandy made land
Made land, clayey substratum

## Soil Group 13 (Map Symbol 13)

Mined Areas - Phosphate
Most of this area occurring between the Ashley River and Rantowles Creek, was extensively mined
years ago for the underlying phosphate rock. The relief varies from level, to ridges and troughs. The low, level areas have slow internal drainage and a high water table. The soils are generally fine sandy loams to fine sandy clay loam in texture on the level areas and sandy loam to sandy clay loam in the ridges and trough areas. Drainage is very difficult because of the topography. The present, and most suitable use, is woodland.

## Soil Group 14 (Map Symbol 14)

Coastal Beach
This group includes the beach area that is flooded daily by the tide, and also the sand dunes back of the beaches. The dune areas are deep, loose, drouthy sands, constantly being shifted by the wind and occasionally eroded by water. They are very low in fertility and organic matter. Coastal Beach occupies long narrow areas along the ocean shoreline of Charleston County. Drainage is not a problem on the dune sands. Their present use is for recreation and as beach house sites. Hurricanes and storms cause wind and water hazards.

## Factors Considered <br> in Preparation of Plan

The Drainage Feasibility Study was prepared by Engineers of the Soil Conservation Service with the assistance of Engineers of the Charleston County Public Works Department. On-site investigations were made of the outlets for each Main Canal, and the factors affecting drainage within the watershed such as tidal ranges, river stages, flooding, and the time of year in which flooding occurs, were studied.
The reconnaissance soil survey of the County, prepared by Soil Scientists of the Soil Conservation Service, was used to determine the extent of the land needing drainage, and the soil characteristics which affect drainage design and construction.

The backlog of engineering information available through the Charleston Work Unit Office of the Soil Conservation Service and the Charleston County Public Works Department was also used, particularly that pertaining to drainage investigations.
U. S. Geological Survey Topographic Maps were used to determine the general topography within each watershed and to assist in delineation of watersheds. A limited amount of instrument surveying was made to secure detailed information in critical areas.

Uncontrolled aerial photos, scale $1^{\prime \prime}=1,000^{\prime}$, which were flown in 1961, were used in recording field data and for preparation of the drainage plan.

Agencies and comercial concerns, having knowledge of specific drainage problems, were consulted in making the final decisions in certain areas. Maps, surveys, and plans available from these agencies were also used.

In most instances, mains were located along natural drainage ways with modifications in alignment to improve the flow and the collection of water. All needed laterals within the watersheds were not located since the purpose of the
study is to locate and design only the main canals which will furnish the means for disposal of runoff from all parts of the watershed. All mains are terminated in tidal creeks or natural outlets at a point where they have adequate capacity and depth.

No attempt was made to locate underground utilities such as cables, gas pipe lines, water mains, and conduits. However, due consideration must be given to the location of these underground utilities during the preparation of the final plans.

In some instances, main canals were planned to pass through existing farm ponds in order to maintain required depth and grades. In preparing the final plans, it will be necessary to eliminate or by-pass these sites. In general, the drainage plan was limited to areas considered as "high lands", that is, five feet or more above mean low water. Drainage plans were not prepared for areas of "high land" such as Sullivans Island, Isle of Palms, and Folly Beach, which have good local drainage.

The drainage plans were confined to the County and do not include proposed drainage installations within the limits of the old City of Charleston.

Watersheds draining into the County from adjoining Counties were determined for the purpose of designing main canals. The mains, however, are shown beginning at the County line. Due attention was given to possible land use changes which would affect runoff within the portion of these watersheds in adjacent Counties.

## Engineering Considerations

Engineering considerations for planning, design, construction, maintenance and other matters pertinent to the Main Drainage Canals Feasibility Study are listed below:

## Design

1. The plan presented herewith is a Feasibility Study to estimate the cost and the extent of needed main drainage facilities and the physical practicability of drainage in the county. Detailed Engineering surveys and designs will be required before any part of the proposed plan is constructed. All improvements should be made continuous, beginning at the lower or outlet end of the watershed.
2. Plans and designs contained in this report do not include a complete study of underground storm sewers found in Areas 2 and 3, due to the fact that these are not considered as mains. Also, there is a lack of information on original surveys and designs showing size, depth and location. Detailed studies will be needed to determine the present condition of these storm sewers and their additional needs.
3. Culverts at rail and road crossings were designed to satisfy the minimum requirements based on expected flow. Increases in size of these structures may be desirable to provide an added safety factor for passing run-
off in excess of designed flow; especially, where presently unforeseen improvements are made in the vicinity.
4. In designing the drainage system, anticipated future land use was considered in determining channel sizes. This future use was based on projections prepared by the Charleston County Planning Board.
5. The South Carolina Wildife Resources Department will be consulted when fish and wildlife may be affected by the construction of main drainage canals.

## Acquisitions of Rights-of-way

The means for, and the acquisition of adequate rights-of-way for the installation of main canals is absolutely essential. The right-of-way must be adequate to take care of width requirements for spoil management, channel section, berm, and access. (See Figure 2)

## Maintenance of Channels

A well organized and adequately financed maintenance program is essential to maintain design capacity in all canals. Provision for annual maintenance or periodic reconstruction to maintain the effectiveness of the channel must be considered prior to construction. The failure of many drainage enterprises to function as designed can be directly attributed to an inadequate maintenance program. Maintenance of the designed depth of channels is one of the most important items in a maintenance program. The cost of maintenance may be reduced considerably if provision is made in channel designs for easy access, stabilization of side slopes and other silt-contributing areas such as road fills and road drainage immediately following construction. Provision should also be made for maintenance of pumps, conduits, tide gates and dikes, so that these installations may be completely operable at all times.

## Obstructions

Construction of fences, walks, and other structures that may retard channel flow should not be permitted except as approved by the responsible agency of the County Govermment. Other structures such as culverts, bridge piers, trestles, etc., should be designed so as to cause minimum interference with the channel flow. Dumping trash, garbage, and other debris in channels should be prohibited.

## Definition of Terms

Brief descriptions of terms used in this report are listed below in alphabetical order.

Available Water Capacity - The available water capacity is expressed in inches per inch of soil depth, and is an approximation of the capillary water in the soil when wet to field capacity.

[^0]Dispersion - The degree and rapidity with which soil structure breaks down or slakes in water. High dispersion means that the soil slakes readily.

## Engineering Soil Classification Systems

AASHO - The American Association of State Highway Officials has developed a classification based on the field performance of soils. In this classification, soils are placed in seven groups designated as: A-1, A-2, A-3, A-4, A-5, $A-6$, and $A-7$. Some of the groups are divided into subgroups. The soils in each group are evaluated by means of a group index, a number that takes into account the behavior of soil and soil materials in embankments, subgrades, and subbases. The essentials of the classification are shown in Table 2, which also describes, for each class, some characteristics of the material. Most highway engineers classify soil in accordance with this system.

Unified Soil Classification System - A soil classification system in which the soil materials are identified as coarse grained ( 8 classes) fine grained (6 classes), or highly organic. Some characteristics of these classes of soil are given in Table 2.

Horizon, Soil - A layer of the soil approximately parallel to the surface soil and having well defined characteristics, but different in appearance and characteristics from the layers above and below it.

Internal Drainage - The movement of water through the soil profile. The rate is affected by the texture of the surface soil and subsoil and by the height of the water table. A wet, deep sand may have slow internal drainage when the water table is high and rapid internal drainage when the water table is low. A plastic sandy clay soil may have slow internal drainage regardless of water table height.

Infiltration - Rainfall minus interception, evaporation, and surface runoff. The part of rainfall that enters the soil.

Lateral Ditch - A major ditch in a drainage system which serves as a link between the main ditch and the collection system located in a segment of the watershed.

Main Canal - (Ditch or Channel) - The principal channel which conducts the drainage water from the watershed to the outlet.

Organic Hardpan - A compacted soil layer containing finely divided humus and sand.

Perched Water Table - A temporary water table above a slowly permeable substratum at a relatively shallow depth.

Permeability Rate - The rate of movement of water through the soil.

Profile, Soil - A vertical section of the soil through all its horizons and extending into the parent material.

Reaction, Soil - The degree of acidity or alkalinity of a soıl expressed in pH values. A soil that tests to pH 7.0 is precisely neutral in reaction, because it is neither acid nor alkaline. In words the degrees of acidity or alkalinity are expressed thus:
pH
Extremely acid- - - - Below 4.5
Very strongly acid- - 4.5 to 5.0
Strongly acid - - - 5.1 to 5.5
Medium acid - - - - 5.6 to 6.0
Slightly acid - - - -6.1 to 6.5
Neutral - - - - - 6.6 to 7.3
Mildly alkaline - - - 7.4 to 7.8
Moderately alkaline - 7.9 to 8.4
Strongly alkaline - - 8.5 to 9.0
Very strongly alkaline - 9.1 and higher
Reach - A length of channel selected for use in hydraulic computations.

Relief - The elevations or inequalities of a land surface, considered collectively.

Runoff, Surface - Total rainfall minus interception, infiltration, and surface storage, and which moves across the ground to a stream or depression.

Runoff, Subsurface - Water that infiltrates the soil and reappears as seepage or spring flow.

Shrink-Swell Potential - Indicates the volume change to be expected of the soil material with changes in moisture content.

Surface, Soil - The soil ordinarily moved in tillage or its equivalent in uncultivated soil about 6 to 10 inches in thickness - a part of the A horizon.

Terrace (Geological) - An old alluvial plain, ordinarily flat or undulating, bordering a river, lake, or the sea. Stream terraces are frequently called second bottoms, as contrasted to flood plains, and are seldom subject to overflow. Marine terraces were deposited by the sea and are generally wide.

Texture, Soil - The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportions of fine particles are as follows: sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse", "fine", or "very fine".

## Tide Data

Mean Range - Difference between mean high water and mean low water.

Spring Range - The average range which occurs semi-monthly as a result of the moon being full or new.

Mean Tide Level - (Half tide level) - is a plane midway between mean low water and mean high water.

High Water - The maximum height reached by each rising tide.

## Watershed - An area of land from which all water that falls within the area, converges toward and discharges past a designated point.

TABLE 4.
SUMMARY OF DATA AND ESTIMATED COST
DIKES - TIDE GATES AND PUMPS

Area	Pump	Main	Dike		Pumps	Estimated Total
No.	Site NO.	Canal No.	Length - Ft.	No.	Capacity - Ea. - GPM	Cost
1.	A	2	600	2	22,000	\$ 44, 100.00
1	B	9	400	2	20,000	38,200.00
2	C	1	500	2	9.000	32,800.00
2	D	2	400	2	9.000	31,700.00
2	E	3	500	2	24,000	43,000.00
2	$F$	8	400	3	34,000	57,700.00
2	G	12	400	2	28,000	44,600.00
3	H	27	500	2	16,000	38,400.00
3	I	11 \& 12	800	2	28,000	48,900.00
3	J	18	300	2	15,000	36,300.00
3	K	14	300	2	11,000	$30,700.00$
3	L	6	400	2	12,000	32,200.00
6	M	14	700	3	30,000	46,700.00
Grand Total						\$ 525,300.00

TABLE NO.


SUMMARY OF ENGINEERING AND DESIGN DATA BY AREAS

AREA   NO.	LENGTH CANALS AND LATERALS FT.	EXCAVATION   CU. YDS.	RIGHT-OF-WAY   CLEARING   AC.	DIKE AND PUMF INSTALLATIONS NO.	$\begin{gathered} \text { ESTIMATED } \\ \text { TOTAL } \\ \text { COST } \end{gathered}$
1	84,100	133.887	48.8	2	\$ 78.784
2	106,300	155,747	45.8	5	131.041
3	294,300	570,512.	171.7	5	358,320
4	370.000	1,020,890	318.2	-	505, 692
5	244,500	417.484	153.3	-	226.840
6	429,800	937.085	384.7	1	480,084
7	173,800	336,292	110.6	-	171,928
8	191,500	308,808	99.3	-	161,811
9	618, 300	1,082,879	492.5	-	552.898
10	135,100	323,790	129.4	-	163,048
11	90.200	141,404	80.4	-	88,017
12	328,700	987.791	375.7	-	431,483
COUNTY TOTALS	3,084,200	6,376,349	2,370.4	13	3,345,530

## Technical References

C. E. Ramser - FLOW OF WATER IN DRAINAGE CHANNELS - U. S. Department of Agriculture Technical Bulletin No. 129 - U. S. Government Printing Office - Washington, D. C.
H. W. King - Handbook of hydraulics - McGraw-Hill Book Co., Inc., New York, N. Y.

War Department, Corps of Engineers - HYDRAULIC TABLES - U. S. Government Printing Office - Washington, D. C.
U. S. Department of Agriculture, Soil Conservation Service - NATIONAL ENGINEERING HANDBOOK - DRAINAGE - Section 16, Chapters 1, 2, 3, 4, 5, 6.
U. S. Department of Agriculture, Soil Conservation Service - NATIONAL ENGINEERING HANDROOK - HYDRAULICS - Section 5.
U. S. Department of Agriculture, Soil Conservation Service - FIELD DRAINAGE GUIDE FOR SOUTH CAROLINA.
U. S. Department of Commerce, Weather Bureau - TECHNICAL PAPER NO. 4 - RAINFALL, FREQUENCY ATLAS OF THE UNITED STATES - U. S. Government Printing Office Washington, D. C.
U. S. Department of Agriculture, Soil Conservation Service - NATIONAL ENGINEFRING HANDROOK - HYDROLOGY - Section 4.

## Authority and Acknowledgement

Authorization for preparation of the Feasibility Study of Requirements for Main Drainage Canals for Charleston County is the result of a cooperative agreement entered into on September 5, 1961, by:

Charleston County Council - J. Mitchell Graham, Chairman
Charleston Soil Conservation District - T. Wilbur Thornhill, Acting Chairman Soil Conservation Service - T. S. Buie, State Conservationist

Direct responsibility for Preparation of Plans, Designs, and Final Report was as follows:
R. Molinaroli - Civil Engineer - Soil Conservation Service
C. C. Allen - Civil Engineer - Soil Conservation Service

For County Council:
Robert S. Hills, Director - Charleston County Public Works Department
Reconnaissance Soll Survey was prepared by:
James E. McDonald, Soil Scientist - Soil Conservation Service
F. F. Lesesne, Soil Scientist - Soil Conservation Service

Snecial technical assistance during all phases of the preparation of the report was given by:
J. L. Aull, State Conservation Engineer - Soil Conservation Service
E. A. Schlaudt, Drainage Engineer - Soil Conservation Service

Others who furnished data or information used in the preparation of this
report are as follows:
Charleston County Planning Board
Clemson College
West Virginia Pulp and Paper Company
U. S. Forest Service
U. S. Weather Bureau
U. S. Corp of Army Engineers

South Carolina Highway Department
U. S. Navy - Public Works Department

Fairbanks Morse and Company
Charleston County Board of Assessors

Thomas E. Thornhil1, President, Charleston Chamber of Commerce Charles M. Gibson - Member, Charleston County Legislative Delegation

Cartography and Printing - Spartanburg Cartographic Unit, Soil Conservation Service

# Explanation of Engineering Data Tables 

The following Engineering Data Tables contain information, by Areas, for each main canal and laterals by watersheds.

An explanation of each column in the Engineering Data sheets is as follows:

Column	CANAL NUMBER   Numbering of main canals begins with M-1 and laterals with L-1, in each Area. Where main canals cross Area boundaries, the numbering system changes and the total data for the main canal in this case can be determined by referring to the appropriate tables for the Area in which the main canal is located.
Column 2	LENGTH IN FEET   The stationing of all mains and laterals begins at the upper end (headwaters) and continues toward the outlet. The mains and laterals are shown in reaches or section in the data tables for design purposes. Each reach, or section, reflects a change in water concentration resulting from the entrance of lateral drainage.
Column 3	WATERSHED IN ACRES   See Definition of Terms
Column 4	DISCHARGE - CUBIC FEET PER SECOND   From appropriate drainage coefficient curves dependant on the land use.
Column 5	TOP WIDTH IN FEET Self explanatory
Column 6	BOTTOM WIDTH IN FEET   Self explanatory
Column 7	AVERAGE DEPTH IN FEET   Self explanatory
Column 8	EXCAVATION IN CUBIC YARDS Self explanatory
Column 9	RIGHT OF WAY CLEARING IN ACRES Self explanatory
Column 10	REQUIRED RIGHT OF WAY WIDTH IN FEET Based on minimum requirements needed for channel cross section, spoil management, berm width, and access road for maintenance equipment.
Column 11	CULVERTS, LOWERING - LENGTH \& SIZE Refers to the existing in-place culverts which are to be re-used.

Column 12 CULVERTS AND BRIDGES - NEW - LENGTH \& SIZE

Refers to additional culverts, bridges or trestles required to handle design discharge. Design of culverts is based on round concrete pipe.

Column 13 TOTAL ESTIMATED COST IN DOLLARS Total costs shown include only the estimated construction costs and do not include engineering costs and the cost of acquiring required right-of-way. When preparing the final cost estimates these engineering costs and right-of-way costs should be included in the total cost of the project. Total estimated costs as shown are based on the following unit prices prevailing in Charleston County in 1962.

EXCAVATION
Rural Area - High Ground - - $\$ 0.25$ per cu. yd. Urban Areas - - - - . - 0.35 per cu. yd.
Marsh - - - - - - . - 0.50 per cu. yd.
DIKE EMBANKMENT MATERIAL
In Place - - - - - - . $\$ 1.00$ per cu. yd. RIGHT-OF-WAY CLEARING \& GRUBBING

Rural Areas - - . - - - $\$ 350.00$ per acre Urban Areas - - - - - - 500.00 per acre
LOWERING EXISTING CULVERTS
Labor and equipment costs only.
NEW CULVERT AND CONDUIT COSTS
Based on present cost of circular concrete pipe.
BRIDGES
Based on present costs of precast $\mathrm{R} / \mathrm{C}$ prevailing in the county.
TRESTLES
Based on present costs of wooden, pressuretreated creosote trestles prevailing in the county.

ENGINEERING AND DESIGN DATA Area 1-James Island												Sheet 1 of 2
				CHAMI	EL DInEM	SIONS			REQUIRED			TOTAL
canal   No.   (1)	LEN GTH   ft.   (2)	watershed   Ac.   (3)	discharge   c.f.s.   (4)	$\begin{aligned} & \text { TOP } \\ & \text { WIDTH } \\ & \text { Ft. } \\ & (5) \end{aligned}$	BO TTOM   WI DTH Ft.   (6)	AVERAGE DEPTH Ft. (7)	excavation   Cu. Yos.   (8)	RT. OF WAY CLEARINO Ac. (9)	$\begin{gathered} \text { RT. OF WAY } \\ \text { WIDTH } \\ \text { Ft. } \\ (10) \end{gathered}$	CULVERTS   LOWERING Length \& Slze (II)	CULVERTS \& BRIDOES - NEW Length \& Slze (12)	```ESTIMATED COST Dollars (13)```
$\begin{gathered} M-1 \\ M-1 \\ \text { Total-1 } \end{gathered}$	$\begin{array}{r} 4700 \\ 8900 \\ 11.800 \end{array}$	$\begin{aligned} & 260 \\ & 810 \end{aligned}$	58 141	14.2 17.2	$\begin{aligned} & 3.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.8 \end{aligned}$	$\begin{array}{r} 8386 \\ 16,829 \\ 24,995 \end{array}$	$\begin{aligned} & 4.2 \\ & 4.2 \\ & 8.4 \\ & \hline \end{aligned}$	45 53	100 - - ${ }^{\text {- }}$ 4 ${ }^{\prime \prime}$	130' - $38{ }^{\prime \prime}$	13,706.00
$M-2$ $M-2$ $M-2$ Total-2	$\begin{aligned} & 2200 \\ & 2900 \\ & 2300 \\ & 7400 \\ & \hline \end{aligned}$	158 225 483	$\begin{aligned} & 38 \\ & 49 \\ & 93 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 14.2 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2937 \\ & 3871 \\ & 2553 \\ & 9381 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.8 \\ & -- \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 39 \end{aligned}$	$50^{\prime}-38 "$ $50^{\prime \prime}-48 \prime$ _-	--	5,108.00
$M-3$ $M-3$   Total-3	$\begin{aligned} & 5200 \\ & 2800 \\ & 8000 \end{aligned}$	480 598	89 112	18.8 20.0	4.0 4.0	8.4 8.0	$\begin{array}{r} 9872 \\ 7478 \\ 17,148 \end{array}$	$\begin{array}{r} 3.8 \\ 1.3 \\ 4.9 \end{array}$	51 84	$40^{\prime}-38^{\prime \prime}$ $40^{\prime}-24 \prime$ $50^{\prime}-30^{\prime \prime}$ --	$\begin{gathered} \text {-- } \\ \text {-- } \\ 50^{\prime}-30 " \end{gathered}$	7,478.00
$M-4$ Total-4	$\begin{aligned} & 5400 \\ & 5400 \end{aligned}$	244	53	15.0	3.0	8.0	$\begin{aligned} & 8100 \\ & 8100 \end{aligned}$	$2.5$ $2.5$	52	50'- - 38	$\begin{aligned} & 20^{\prime}-30 " \\ & 40^{\prime}-38{ }^{\prime \prime} \end{aligned}$	5,014.00
$M-5$ Total-5	$\begin{aligned} & 3700 \\ & 3700 \end{aligned}$	147	35	13.0	3.0	5.0	$\begin{aligned} & 4380 \\ & 4380 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	38	$\begin{aligned} & \quad-- \\ & 40^{\prime}-15{ }^{\prime \prime} \\ & 40^{\prime}-36^{\prime \prime} \end{aligned}$	$\begin{gathered} 20^{\prime}-15^{\prime \prime} \\ \text {-- } \\ \text { - } \end{gathered}$	2,804.00
$\begin{array}{\|c} M-8 \\ M-8 \\ \text { Total-8 } \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & 1200 \\ & 3700 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 138 \end{aligned}$	$\begin{aligned} & 25 \\ & 33 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 11.0 \end{aligned}$	3.0 3.0	5.4 4.0	$\begin{array}{r} 3131 \\ 938 \\ 4087 \end{array}$	$\begin{aligned} & \hline 1.1 \\ & \hline 1.1 \end{aligned}$	$\begin{aligned} & 42 \\ & 32 \end{aligned}$	--	50'- - $38{ }^{\prime \prime}$	2,336.00
$\begin{array}{\|c\|} \hline M-7 \\ M-7 \\ \text { Total-7 } \\ \hline \end{array}$	$\begin{array}{r} 4900 \\ 800 \\ 5500 \\ \hline \end{array}$	$\begin{aligned} & 290 \\ & 330 \end{aligned}$	$\begin{aligned} & 81 \\ & 89 \end{aligned}$	$\begin{aligned} & 17.2 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 10,152 \\ 1086 \\ 11,218 \end{array}$	$\begin{aligned} & 5.4 \\ & 0.4 \\ & 5.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \\ & 45 \end{aligned}$	--	80' - $38^{\prime \prime}$	5,674.00
$\begin{gathered} M-8 \\ M-8 \\ \text { Total-8 } \end{gathered}$	$\begin{aligned} & 2500 \\ & 3200 \\ & 5700 \end{aligned}$	$\begin{aligned} & 155 \\ & 275 \end{aligned}$	$\begin{aligned} & 38 \\ & 58 \end{aligned}$	14.0 15.2	3.0 4.0	$\begin{aligned} & 5.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 3580 \\ & 5120 \\ & 8880 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 43 \\ & 45 \end{aligned}$	--	$40^{\prime}-38 \prime \prime$ $30^{\prime \prime}-42 \prime$	5,264.00
$\begin{array}{\|c\|} \hline M-9 \\ M-9 \\ \text { Total-9 } \\ \hline \end{array}$	$\begin{aligned} & 3700 \\ & 3800 \\ & 7300 \end{aligned}$	310 439	84 87	14.4 16.8	4.0 6.0	5.2 4.8	6588 8077 12,883	$\begin{aligned} & 3.1 \\ & \\ & 1.7 \\ & 4.8 \end{aligned}$	43 49	$\begin{gathered} 40^{\prime}-30 " \\ \text {-- } \\ \text {-- } \end{gathered}$	-- $40^{\prime}-42 \prime$ $40^{\prime}-54 "$	8,181.00
$\begin{gathered} M-10 \\ \text { Total-10 } \\ \hline \end{gathered}$	$\begin{aligned} & 3300 \\ & 3300 \end{aligned}$	257	55	15.2	3.0	5.8	$\begin{aligned} & 8800 \\ & 8800 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	45	--	40' - 48"	3,007.00
$\begin{gathered} M-11 \\ \text { Total-11 } \end{gathered}$	$\begin{aligned} & 3000 \\ & 3000 \end{aligned}$	115	28	13.0	3.0	5.0	$\begin{aligned} & 3330 \\ & 3330 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	38	--	50' - 30"	2,025.00
$\begin{gathered} M-12 \\ M-12 \\ \text { Total-12 } \\ \hline \end{gathered}$	$\begin{aligned} & 3100 \\ & 4300 \\ & 7400 \end{aligned}$	158 275	38 59	13.0 13.2	3.0 4.0	5.0 4.6	$\begin{aligned} & 4588 \\ & 5091 \\ & 9879 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.9 \\ & 4.1 \end{aligned}$	38 39	$\begin{gathered} \text {-- } \\ 120^{\prime \prime}-30 " \end{gathered}$	180 $24^{\prime}-42 \prime \prime$ - 30	9,823.00
$\begin{gathered} M-13 \\ M-13 \\ \text { Total-13 } \end{gathered}$	1000 8500 7500	143 358	34 73	13.0 14.0	3.0 8.0	5.0 4.0	$\begin{aligned} & 1480 \\ & 7898 \\ & 9178 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	38 39	$\begin{gathered} 40^{\prime}-30 " \\ \text { _- } \end{gathered}$	40'--24"	5.814.00



ENGINEERING AND DESIGN DATA



Area 3-North Charleston - Ladson												Page 2 of 5
				Chann	el dinem	SIONS			REQUIRED			TOTAL
CAMAL   Ho. (1)	Lem ath   ft.   (2)	WATERSHED	discharge   c.f.s.   (4)	$\begin{array}{\|c\|} \hline \text { TOP } \\ \text { WIDTH } \\ \text { FZ. } \\ \text { (5) } \\ \hline \end{array}$	BOTTOM   WIDTK   Ft.   ( 6 )	$\begin{gathered} \text { AVERAGE } \\ \text { DEPTH } \\ \text { Ft. } \\ (7) \end{gathered}$	excavation   Cu. Yds.   (8)	RT. OF WAY CLEARIMO Ac. (9)	RT. OF WAY WIDTH ft. (10)	CuLVERTS   LOWERING   Length \& Size (11)	  BRIDGES - NEW   Length \& SIze   (12)	ESTIMATED   Cost   Dollars   $(13)$
M-12	500	154	38	Existing ditch adequate					41	--	$80^{\prime}-42^{\prime \prime}$	
M-12	1200	269	58	14.0	4.0	5.0	1803	0.8	41	--	$40^{\prime}-42^{\prime \prime}$ $280^{\prime}-54 \prime$	
M-12	1000	330	89	14.0	4.0	4.0	1190	0.8	41		50' - 54"	
M-12	1100	371	75	13.0	5.0	4.0	1483	--	37	--	--	
Total-12	3800						4258	1.4				11,844.00
M-13	800	85	13	This section of existing ditch is adequate Existing $24^{\prime \prime}$ storm drain \| Existing open ditch section is adequate					32	--	--	
M-13	500	90	24						32			
M-13	700	120	30						32	--	--	
M-13	1800	148	35	12.0	4.0	4.0	1904	0.5	35	50' - 48'	--	1.722.00
Total-13	3800						1904	0.5				
M-14	800	74	20	11.0	3.0	4.0	832	--	32	--	80' - 30 "	
M-14	800	135	32	11.0	3.0	4.0	824	0.4	32	--	200' - 42"	
M-14	2300	202	48	13.2	4.0	4.8	3404	--	39	80' - 30"	--	7.010 .00
Total-14	3700						4880	0.4				
M-15	1100	58	18	12.2	3.0	4.8	1144	--	38	80' - $38^{\prime \prime}$	--	
M-15	400	173	40	12.2	3.0	4.6	418	0.3	38	--	$80^{\prime}-30^{\prime \prime}$ $50^{\prime \prime}-42^{\prime \prime}$	
M-15	1100	188	43	14.0	4.0	5.0	1837	0.8	41	--	50' - 42"	
Total-15	2800						3397	0.9				4,820.00
M-18	1900	83	22	Clean out existing ditch				-	$\begin{gathered} 38 \\ \text { "to } 38 \text { ") } \end{gathered}$	--	$50^{\prime}-54^{\prime \prime}$	$2,581.00$
M-18	4200	283	59	$\begin{aligned} & 14200 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \text { ft. exis } \\ & 6.0 \end{aligned}$	sting sto4.0	$\|$rm drain ran   2812   2812	ging from 24				
M-18	1900	298	83						33			
Total-18	8000							--				
M-17	Present canal adequate from upper end to Goodrich Road								41	--	$50^{\prime-}-54 "$	4,011.00
M-17	3500	235	52	14.0	4.0	5.0	4878	2.4	41	--		
Total-17	3500						4878	2.4				
M-18	2000	2497	383	28.0	14.0	8.0	8880	3.3	78		-	78,058.00
M-18	1400	3083	432	52.0	40.0	8.0	14,308	4.9	159			
M-18	2000	3355	481	55.0	45.0	5.0	18,580	2.7	153			
M-18	1300	3851	495	58.0	50.0	4.0	10,400	--	155			
M-18	3400	4248	563	58.0	50.0	4.0	27,200	--	155			
M-18	1800	4523	594	84.0	55.0	4.5	15,872	--	188			
M-18	2400	4908	837	70.0	80.0	5.0	28,898	--	183			
Total-18	14,100						124,138	10.9				
M-19	1900	158	38	12.2	3.0	4.8	2470	0.4	37	80'-24"		1,727.00
Total-19	1900						2470	0.4				
M-20	2400	85	22	$\begin{aligned} & 12.2 \\ & 15.0 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.0 \\ & 4.8 \end{aligned}$	3120	0.7	$\begin{aligned} & 37 \\ & 44 \\ & 37 \end{aligned}$	$50^{\prime}-18^{\prime \prime}$	--	4,130.00
M-20	800	292	82				1480	--				
L-1	2100	138	33				2730	--				
Total-20	5300						7330	0.7				
M-21	2200	177	41	14.0	4.0	5.0	3874	0.4	41	50' - $38{ }^{\prime \prime}$	--	2,387.00
Total-21	2200						3874	0.4				



ENGINEERING AND DESIGN DATA Area 3-North Charleston-Ladson												Page 4 of 5TOTALESTIMATEDCOSTDOII ars(13)
				CHAMN	El. dine	SIONS			REQUI RED			
CANAL   No. (1)	LEN GTH   Ft.   (2)	WATERSHED   Ac.   (3)	discharge   c.f.s.   (4)	$\begin{array}{\|c\|} \hline \text { TOP } \\ \text { WIDTH } \\ \text { Ft. } \\ (5) \\ \hline \end{array}$	$\begin{gathered} \text { BOTTOM } \\ \text { WIDTH } \\ \text { Ft. } \\ (6) \end{gathered}$	$\begin{gathered} \text { AVERAGE } \\ \text { DEPTH } \\ \text { Ft. } \\ (7) \end{gathered}$	EXCAVATION   Cu. Yds.   (8)	RT. OF WAY clearing Ac.   (9)	$\begin{gathered} \text { RT. OF WAY } \\ \text { WIDTH } \\ \text { Ft. } \\ (10) \end{gathered}$	CULVERTS   LOWERING   Length \& Size   (11)	CULVERTS \& bridges - new Length \& Slze (12)	
$\begin{gathered} M-33 \\ M-33 \\ M-33 \\ M-33 \\ L-1 \\ \text { Total-33 } \\ \hline \end{gathered}$	$\begin{array}{\|r} 2100 \\ 2500 \\ 1800 \\ 4300 \\ 2700 \\ 13,200 \end{array}$	225 381 885 984 181	49 78 107 188 37	Existinǵ canal is adequate Existing canal is adequate Existing canal is adequate				$\begin{aligned} & 5.5 \\ & 2.0 \\ & 7.5 \end{aligned}$	41 55 55 82 38	-- -- -- --	$\begin{gathered} 40^{\prime}-24^{\prime \prime} \\ -- \\ - \\ 80^{\prime}-42^{\prime \prime} \end{gathered}$	8,846.00
$M-34$ $M-34$ $M-34$ Total-34	$\begin{aligned} & 3800 \\ & 3000 \\ & 3200 \\ & 9800 \end{aligned}$	375 892 892	77 128 158	13.0 15.0 17.0	3.0 5.0 7.0	5.0 5.0 5.0	5328 5580 7104 17.992	$\begin{aligned} & 2.8 \\ & 2.1 \\ & 3.2 \\ & 7.9 \end{aligned}$	38 44 49	--	$80^{\prime}-80 "$ $40^{\prime}-48^{\prime \prime}$ --	10.383 .00
$M-35$ $M-35$ Total-35	$\begin{aligned} & 2100 \\ & 2800 \\ & 4900 \\ & \hline \end{aligned}$	177 520	41 98	$\begin{aligned} & 13.0 \\ & 14.0 \end{aligned}$	3.0 4.0	5.0 5.0	$\begin{aligned} & 3108 \\ & 4878 \\ & 7784 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.2 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & 41 \end{aligned}$	--	40' - ${ }^{\prime \prime}$	5,208.00
$M-36$ $M-38$ $M-38$ Total-36	4500 1000 2300 7800	220 294 503	49 82 97	$\begin{aligned} & 13.0 \\ & 13.0 \\ & 13.0 \end{aligned}$	3.0 3.0 3.0	5.0 5.0 5.0	$\begin{array}{r} 8880 \\ 1480 \\ 3404 \\ 11.544 \end{array}$	$\begin{aligned} & 3.3 \\ & 0.7 \\ & 1.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \\ & 38 \end{aligned}$	--	$\begin{aligned} & 40^{\prime}-42 \prime \\ & 200-80 \prime \\ &--\end{aligned}$	11,273.00
$M-37$ $M-37$ $M-37$ Total-37	3000 4200 3300 10,500	218 855 818	48 120 143	13.0 15.0 18.0	3.0 5.0 8.0	5.0 5.0 5.0	$\begin{array}{r} 4440 \\ 7770 \\ 8732 \\ 18,942 \end{array}$	$\begin{aligned} & 2.2 \\ & 3.7 \\ & 3.0 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 38 \\ & 44 \\ & 48 \end{aligned}$	--		9,725.00
M-38	2000	181	37	13.0	3.0	5.0	2980	1.5	38	--	70' - 48	
M-38	3100	285	80	13.0	3.0	5.0	4588	2.3	38	--	70-48	
M-38	1000	874	123	18.0	8.0	5.0	2040	0.9	48	--		
M-38	2000	1019	173	19.0	9.0	5.0	5180	2.2	55	--	--	
M-38	2000	1039	178	24.0	14.0	5.0	7040	2.8	88	--	-	
L-1	1800	92	23	13.0	3.0	5.0	2884	1.3	38	--	50' - $38{ }^{\prime \prime}$	
L-1	1200	154	38	13.0	3.0	5.0	1778	0.9	38	--	--	
L-2	2100	138	32	13.0	3.0	5.0	3108	1.5	38	--	--	
L-2	2900	292	81	14.0	4.0	5.0	4843	2.3	41	--	--	
L-3	2400	133	32	13.0	3.0	5.0	3552	1.8	38	--	90' - 42 "	
$\begin{gathered} \mathrm{L}-3 \\ \text { Total-38 } \end{gathered}$	1400 21,900	188	43	13.0	3.0	5.0	$\begin{array}{r} 2072 \\ 39,823 \end{array}$	$\begin{array}{r} 1.0 \\ 18.5 \end{array}$	38	--	--	20,098.00
M-39	1800	110	27	13.0	3.0	5.0	2884	0.8	38	40' - 48"		
M-39	900	158	38	13.0	3.0	5.0	1332	0.7	38	-	--	
M-39	1200	808	142	17.0	7.0	5.0	2884	1.2	49	--	15. R/C Bridge	
M-39	5200	1187	193	19.0	9.0	5.0	13.488	5.8	55	--	--	
M-39	1000	1534	240	22.0	12.0	5.0	3150	1.3	82	--	--	
L-1	3000	220	49	13.0	3.0	5.0	4440	2.3	38	--	--	
L-1	3100	342	75	13.0	3.0	5.0	4588	2.3	38	--	--	
L-2	2700	294	82	13.0	3.0	5.0	3996	2.0	38	--	--	
L-2	3800	818	113	15.0	5.0	5.0	7030	3.3	44	--	--	
L-3	1800	108	27	13.0	3.0	5.0	2368	1.2	38	--	80' - 42"	
L-3	2100	184	42	13.0	3.0	5.0	3108	1.5	38	--	-	
Total-39	26,400						48,808	22.4				23,641.00




INEERING AND DESIGN DATAArea $\mathbb{4}$-Johns Island												Sheet 2 of 3
				CHAN	EL DIME	SIONS			REQUIRED			TOTAL
CAHAL   Ho.   (1)	LEM GTH   Ft.   (2)	WATERSHED   Ac.   (3)	discharge   c.f.s.   (4)	$\begin{aligned} & \text { TOP } \\ & \text { WIDTH } \\ & \text { FI. } \\ & (5) \end{aligned}$	$\begin{gathered} \hline \text { BO TTOM } \\ \text { WI DTH } \\ \text { Ft. } \\ \text { ( } 6 \text { ) } \end{gathered}$	$\begin{gathered} \text { AVERAGE } \\ \text { DEPTH } \\ \text { Ft. } \\ (7) \end{gathered}$	excavation   Cu. Yds.   (8)	RT. OF WAY clearing Ac. (9)	RT. OF WAY WI DTH Ft.   (10)	culverts   LOWERING   Length \& SIze (11)	CULVERTS \& BRIDGES - HEW Length \& SIze (12)	```ESTIMATED COST Dollars (13)```
M-8	5700	425	83	17.0	7.0	5.0	12,854	5.8	47	--	--	
M-8	2300	551	103	20.0	10.0	5.0	8394	2.7	57	--	--	
M-8	3900	1384	219	32.0	22.0	5.0	19,500	7.4	89		$30 \cdot$ Bridge	
M-8	1900	1801	275	38.0	28.0	5.0	11,809	4.3	105		$30 \cdot$ Bridge	
M-8	4800	2143	318	42.0	32.0	5.0	31,510	3.8	118	--	--	
L-1	8100	388	77	15.0	5.0	5.0	11,285	5.3	44	--	$30^{\prime}-42^{\prime \prime}$	
L-2	1900	241	53	13.0	3.0	5.0	2812	1.4	38	--	-	
L-2	2100	888	122	18.0	8.0	5.0	9840	2.2	52	--	--	
L-3 Total-8	2800 31.100	358	73	15.0	5.0	5.0	$4810$	$2.3$	44	--	--	0
	31.100											54,185.00
M-7	2900	71	19	13.0	3.0	5.0	4292	2.1	38	--		
M-7	1800	488	91	17.0	7.0	5.0	3552	1.8	47	--	--	
M-7	1000	581	109	18.0	8.0	5.0	2410	1.1	52	--	15. Bridge	
M-7	1800	591	110	18.0	8.0	5.0	3858	1.1	52	--	--	
M-7	2000	2190	325	32.0	22.0	5.0	10,000	--	89	--	--	
L-1	2300	177	41	13.0	3.0	5.0	3404	1.7	38	--	--	
L-1	1600	343	70	15.0	5.0	5.0	2980	1.4	44	--	--	
L-2	3200	90	23	13.0	3.0	5.0	4738	2.4	38	--	40' - $38^{\prime \prime}$	
L-3	3000	115	29	13.0	3.0	5.0	4440	2.2	38		$\begin{aligned} & 40^{\prime}-38^{\prime \prime} \\ & 40^{\prime}-42^{\prime \prime} \end{aligned}$	
Total-7	19,200						39,850	13.6				21.803 .00
M-8	3000	437	88	18.0	8.0	5.0	8120	2.8	48	--	--	
M-8	2700	759	138	19.0	9.0	5.0	8993	3.0	55	--	--	
M-8	2100	1092	185	22.0	12.0	5.0	8815	2.7	82	--	--	
M-8	3100	1285	209	28.0	18.0	5.0	12,059	4.8	73	--	--	
M-8	1800	1599	250	28.0	18.0	5.0	8818	--	78			
L-1	2700	92	23	13.0	3.0	5.0	3998	2.0	38	--	40' - $38^{\prime \prime}$	
L-2	4800	284	57	13.0	3.0	5.0	8808	3.4	38	--	-_	
Total-8	19,800						49,407	18.7				23,035.00
M-9	3000	239	54	13.0	3.0	5.0	4440	2.2	38	--	--	
M-9	3300	379	78	15.0	5.0	5.0	8105	2.9	44	-_	15' Bridge	
M-9	1800	494	94	18.0	8.0	5.0	3284	1.5	48	-_	--	
M-9	2700	883	124	18.0	8.0	5.0	8507	2.9	52	--	15' Bridge	
M-9	4300	788	141	19.0	9.0	5.0	11,137	--	55	-_	--	
L-1	1800	113	29	13.0	3.0	5.0	2388	1.2	38	--	$40^{\prime}$ - $42^{\prime \prime}$	
Total-9	28.500						33,821					19,406.00
M-10	4100	214	48	13.0	3.0	5.0	8088	3.0	38	--	40' - 48"	
M-10	2400	329	88	13.0	3.0	5.0	3552	0.7	38	--	-_	
Total-10	8,500						9820	3.7				5,420.00
M-11	3400	192	34	13.0	3.0	5.0	5032	2.5	38	--	80' - 42"	
M-11	4100	391	59	14.0	4.0	5.0	8847	3.3	41	--	--	
M-11	2700	1099	143	20.0	10.0	5.0	7508	--	57	--	15' Bridge	
M-11	4100	1253	181	22.0	12.0	5.0	12,915	--	82	-_	--	
L-1	4800	383	59	13.0	3.0	5.0	8808	3.4	38	-_	40' - 80"	
L-1	4400	745	103	17.0	7.0	5.0	9788	4.3	49	--	,	
L-1	3000	993	132	19.0	9.0	5.0	7770	3.4	55	--	--	
L-2	2300	78	18	13.0	3.0	5.0	3404	1.7	38	--	--	
Total-11	28.800						80.050	18.6				30,990.00

ENGINEERING AND DESIGN DATA


ENGINEERING AND DESIGN DATA

	$\begin{array}{l\|} \hline 0 \\ \circ \\ \stackrel{0}{\infty} \\ \infty \\ \end{array}$	8   8   0   0   0   10   1	$\begin{aligned} & \hline 8 \\ & \infty \\ & \stackrel{0}{5} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{array}{l\|} \hline 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \\ & \dot{0} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 8 $i 0$ 0 0 7	8 0 0 N \％
							1		
	$\begin{gathered} \underset{\sim}{z} \\ \underset{\sim}{2} \\ 1 \\ 1 \end{gathered} 1$	111	111	11111	1111	$1 \begin{array}{lllll}1 & 1 & 1 \\ 1\end{array}$	$\begin{gathered} =- \\ \alpha \\ \infty \\ 1 \\ \vdots \\ \vdots \\ \infty \end{gathered}$	11	111
		¢ ©	¢0	©		©	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty}$	© $0 \times 8$
	$\begin{array}{\|cccc} n & 0 & & 0 \\ \dot{\gamma} \dot{\omega} & 1 & \infty \\ \hline \end{array}$				$\left\|\begin{array}{ccccc} \infty & 0 & 0 & \infty & \sim \\ \sim & \dot{\sim} & 1 & \dot{\gamma} & \dot{r} \\ \dot{\sim} \end{array}\right\|$				$\begin{array}{llll} \infty & \stackrel{\rightharpoonup}{\circ} \\ \dot{\sim} & 1 \\ \dot{\sim} & \dot{\omega} \end{array}$
							$\left\|\begin{array}{cc} o \\ y & 0 \\ \text { F } \\ \text { y } \end{array}\right\|$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	
	O－	ㄴ․ㅇ․	000  	00000 เค เค่ เค เค เค่	¢0ㅇ․	$\circ 0000$ ค่ ท่ เค เค เค	$\bigcirc$	$\begin{gathered} \circ \\ \text { in } \\ \text { in } \end{gathered}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ i n & \text { in } & \text { in } \end{array}\right.$
	¢¢	000 $\dot{\circ} \infty$	$\circ \circ \circ$ ゥ் $\dot{\infty}$	$\dot{m} \dot{\circ} \dot{\infty} \dot{\circ} \dot{0} \dot{0} \dot{\circ} \dot{0}$	$\begin{array}{l:ll} 0 & \circ & 0 \\ \dot{m} \dot{\infty} \dot{\infty} \dot{m} & 0 \\ \dot{m} \end{array}$	OOOOOO	$\begin{aligned} & \circ \\ & \dot{m} \end{aligned}$	$\begin{array}{ll} \circ & 0 \\ \dot{m} \dot{~} \end{array}$	
졸		$\left\lvert\, \begin{array}{ccc} 0 & 0 \\ \dot{0} \dot{\infty} \underset{\sim}{0} \\ \end{array}\right.$					$\begin{aligned} & 0 \\ & \underset{\sim}{n} \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ \dot{m} \\ \underset{7}{\circ} \\ \hline \end{array}$	$\begin{array}{r} 000 \\ \dot{m} \dot{9} \dot{-1} \underset{\sim}{\circ} \\ \hline \end{array}$
		風	N	－$\sim_{\sim}^{\text {F }}$			¢	－	®
	Noin	－		－${ }_{\text {－}}^{\text {人 }}$	－	隹	\％	号	
$\begin{aligned} & \text { I } \\ & \text { in } \\ & \text { in } \\ & \hline \end{aligned}$			$\left\lvert\, \begin{array}{cccc} \hline 0 & 0 & 0 \\ \stackrel{0}{0} & 0 \\ \hline & 0 \\ \hline \end{array}\right.$				$\left\|\begin{array}{ll} \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{array}{ccc} 8 & 0 & 0 \\ 0 & 0 \\ & 0 \\ \hline \end{array}\right.$	
发：									


ENGINEERING AND DESIGN DATA

				$\circ$   8   $\dot{0}$   0   0   -1   -1	8 8 0 0 0 0
		$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1\end{array}$	11	11	i i i i i i i i
			©	¢ $\underset{\sim}{\infty} \times$	
				$\begin{array}{llll} \wedge & \infty & \infty \\ \dot{\infty} & \dot{\infty} & \dot{\infty} & \dot{\square} \end{array}$	
		00000000000000000  	$\begin{array}{cccc} 0 & 0 & 0 \\ \text { in in in in } \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ i n & \text { in } & \text { in } \end{array}\right.$	000000000000000  
		00000000000000000  	$\left\lvert\, \begin{array}{lll} 0 & \circ & 0 \\ \dot{m} \dot{\omega} & 0 \\ \text { in } & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{ccc} 0 & \circ & 0 \\ \dot{\omega} \dot{\omega} & \dot{\infty} \end{array}\right.$	000000000000000  
	这范	00000000000000000  		$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ \dot{m} & \dot{m} & \dot{0} \end{array}\right.$	000000000000000  
				艮的运	
		的苗			 
	$\begin{aligned} & \text { 존 } \\ & \underset{\sim}{3} \\ & \underset{\sim}{\circ} \end{aligned}$				
	要 들				


ENGINEERING AND DESIGN DATA Area 6-Meggett - Hollywood												Sheet 2 of 4
				CHAN	EL DIME	SIORS			REQUIRED			TOTAL
canal   No.   (1)	LENGTH   Ft.   (2)	WATERSHED   Ac.   (3)	DISCHARGE   c. f. 8.   (4)	$\begin{aligned} & \text { TOP } \\ & \text { WIDTH } \\ & \text { ft. } \\ & \text { (5) } \end{aligned}$	BOTTOM   WI DTH Ft.   (6)	$\begin{gathered} \text { AVERAGE } \\ \text { DEPTH } \\ \text { Ft. } \\ (7) \end{gathered}$	excavation   Cu. Yds.   (8)	RT. of way clearing Ac. (9)	$\begin{gathered} \text { RT. OF WAY } \\ \text { WIDTH } \\ \text { Ft. } \\ (10) \end{gathered}$	CULVERTS   LOWERING   Length \& SIze   (1I)	CULVERTS \& bridges - new Length \& SIze (12)	```ESTIMATED```
M-5	3500	207	34	13.0	3.0	5.0	5180	2.8	38	--	--	
M-5	2700	388	57	13.0	3.0	5.0	3998	2.0	38	--	--	
M-5	5300	848	118	18.0	8.0	5.0	12.773	5.8	52	--	$80^{\prime}-88^{\prime \prime}$	
M-5	3800	1124	144	20.0	10.0	5.0	10,564	--	57	--	--	
$\stackrel{\text { L-1 }}{\text { L }}$	4200 19	188	32	13.0	3.0	5.0	8218	1.1	38	--	$30^{\prime}-42^{\prime \prime}$	
Total-5	19,500						38,729	11.3				19,894.00
M-8	4300	388	57	13.0	3.0	5.0	8384	3.2	38	--	40' - $80{ }^{\prime \prime}$	
M-6	1600	412	82	14.0	4.0	5.0	2872	1.3	41	--	--	
M-6	2200	647	91	16.0	6.0	5.0	4488	2.0	48	--	--	
M-6	1300	1079	140	20.0	10.0	5.0	3814	1.5	57	--	15' Bridge 15' Wooden Trestle	
M-8	1900	1140	144	20.0	10.0	5.0	5282	--	57	--	-	
L-1	2700	102	19	13.0	3.0	5.0	3998	2.0	38	--	--	
L-2	1800	117	21	13.0	3.0	5.0	2864	1.3	38	--	40' - 42 "	
L-2	3300	255	42	13.0	3.0	5.0	4884	2.4	38	--	-	
Total-8	19, 100						33.964	13.7				19,797.00
M-7	3000	258	42	13.0	3.0	5.0	4440	2.2	38	--	50' - 54"	
M-7	2200	435	85	14.0	4.0	5.0	3874		41	--	$40^{\prime}-54 \prime \prime$ $40^{\prime}-80^{\prime \prime}$	
Total-7	5200						8114	2.2				6.978 .00
M-8	4000	398	80	14.0	4.0	5.0	8880	0.8	41	--	40' - 42"	
Total-8	4000						8880	0.8				4.292.00
M-9	3200	363	58	13.0	3.0	5.0	4738	0.7	38	--	--	
Total-9	3200						4738	0.7				2,813.00
M-10	3500	195	33	13.0	3.0	5.0	5180	2.8	38	--	--	
M-10	1400	450	87	14.0	4.0	5.0	2338	1.1	41	--	40' - $54{ }^{\prime \prime}$	
M-10	3700	712	98	17.0	7.0	5.0	8214	--	49	--	-	
Total-10	8800						15,732	3.7				8.221.00
M-11	4400	184	32	13.0	3.0	5.0	8512	3.2	38	--	40' - 48'	
M-11	1200	310	49	13.0	3.0	5.0	1778	0.9	38	--	40' - 54"	
M-11	1400	358	55	13.0	3.0	5.0	2072	1.0	38	--	--	
M-11	4400	731	100	17.0	7.0	5.0	9788	4.3	49	-_	--	
M-11	2000	807	110	17.0	7.0	5.0	4440	2.0	49	-_	--	
M-11	1300	1180	151	20.0	10.0	5.0	3814	1.5	57	--	15' Bridge	
M-11	2800	1295	182	20.0	10.0	5.0	7784	--	57	-_	20. Trestle	
L-1	4700	207	35	13.0	3.0	5.0	8958	3.5	38	--	$40^{\prime}-48^{\prime \prime}$	
L-2	5800	297	47	13.0	3.0	5.0	8584	4.3	38	40' - $38^{\prime \prime}$	--	
Total-11	28.000						51,508	20.7				28,826.00
M-12	8000	230	38	13.0	3.0	5.0	8880	--	38	--	--	
Total-12	6000						8880	--				4,440.00
M-13	3900	232	38	13.0	3.0	5.0	5772	2.2	38	--	50' - 54"	
M-13	3800	570	82	18.0	8.0	5.0	7752		48		40'-54"	
Total-13	7700						13,524	4.0		--	15 Bridge	11,709.00

Area 6-Meggett - Hollywood

	8   0   10   0   0			
		1 i 1 1 1 1 i i i	$1 \begin{array}{llllll}1 \\ 1 & 1 & 1 & 1\end{array}$	
		$\underset{\sim}{\infty} \times \underset{\sim}{\infty}$ (	¢ $\mathrm{m}_{\text {¢ }}^{\text {¢ }}$	
	-000000 000  	000000000  	- 00000  	000000000000000  
		000000000 $\dot{m} \dot{m} \dot{\infty} \dot{m} \dot{m} \dot{\infty} \dot{\infty} \dot{m}$		000000000000000  
				000000000000000  
			$\underset{\sim}{\infty}$ ¢ ¢ ©	
		¢		$\infty \times \infty$ ~O
$\underset{\sim}{\text { 픈 }}$				ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ  
裔 : こ				

ENGINEERING AND DESIGN DATA
Area 6-Meggett - Hollywood

ENGINEERING AND DESIGN DATA

～		$\begin{gathered} 0 \\ 0 \\ \infty \\ 0 \\ \underset{\sim}{0} \\ \underset{\sim}{0} \end{gathered}$	$\begin{gathered} o \\ 0 \\ \dot{j} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ i \\ \stackrel{i}{0} \\ \stackrel{i}{\sim} \end{gathered}$		8   0   0   0   0   0	8   8   $\infty$   0   0   0   0   $\infty$	0   1	8   8   1   0   0	
		1 1 1 1				111	$\begin{gathered} \circ \\ \hline 0 \\ 10 \\ 1 \\ 1 \\ 1 \\ \vdots \\ \hline \end{gathered}$			
		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 i	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	111111	111	111	111	11	11
				© ¢ ¢ ¢ ¢		®			$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$
		00000  	0000000  			$\circ \circ \circ$ io in in	$\begin{array}{ccc} \circ \\ \text { in in o } \\ \text { in } \end{array}$	$\begin{array}{ccc} 0 \\ \text { in in } \\ \text { in } \end{array}$	$\left\lvert\, \begin{array}{cc} 0 & 0 \\ i x & 0 \\ i \end{array}\right.$	$\begin{array}{cc} 0 & 0 \\ \text { in in } \end{array}$
			0000000 $\dot{m} \dot{\circ} \dot{\omega} \dot{\omega} \dot{\infty} \dot{\mathrm{O}} \dot{\mathrm{m}}$	00000 $\dot{\omega} \dot{\infty} \dot{\infty} \dot{-} \dot{\sim}$	$\begin{array}{cccc} \circ & 0 & 0 & 0 \\ \dot{m} \dot{\omega} \stackrel{\circ}{\circ} \dot{C} & \dot{\sim} \end{array}$	O－	$\begin{array}{ccc} \circ & \circ \\ \dot{m} \text { in } & \circ \\ \hline \end{array}$	$\begin{array}{l\|l} \circ \circ \circ \\ \dot{\circ} \dot{\circ} \dot{\infty} \end{array}$	$\bigcirc \stackrel{\circ}{\circ}$	－
	要								$\begin{array}{cc} 0 & 0 \\ \dot{M} \\ \underset{\sim}{9} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \circ \circ \\ & \dot{9} \cdot \stackrel{9}{~} \end{aligned}$
		介⿵冂人）				\％${ }_{\text {m }}^{\sim}$	¢0으운	成莐号		®®
						人			N	웃응
		$\left\lvert\, \begin{array}{lllll} \hline 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$								$\begin{aligned} & \circ 80 \\ & 80 \\ & \text { O } \\ & \text { N } \end{aligned}$
	雩：						$\left.\begin{array}{llll} 0 & & 0 \\ 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ & 0 \\ 0 & 0 \end{array} \right\rvert\,$			


ENGINEERING AND DESIGN DATA

			$\begin{aligned} & \circ \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8   0   0   0   0   0	$\begin{gathered} 8 \\ 0 \\ 0 . \\ 0 \\ 0 \\ \vdots \end{gathered}$	0   0   +   $\vdots$   $i$   0   0	$\begin{aligned} & \circ \\ & 0 \\ & \dot{0} \\ & 0 \\ & ल \\ & \end{aligned}$	$\circ$ 0 $i$ 0 0 7	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 0 0 0 0 0 0	8 0 0 0 0 7	8   8   $\dot{0}$   0   0   0
			1		1		1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & i \end{aligned}$			$\left\lvert\, \begin{aligned} & \bar{y} \\ & \text { y } \\ & 1 \\ & 1 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}\right.$	
		111	I	11	i	1 1 1	1	11	1	1 1 1 1 1 i	11	11111
		¢ $\begin{gathered}\text { ¢ } \\ \text { ¢ }\end{gathered}$	－	¢ ${ }_{0}^{\infty}$	$\underset{\sim}{\infty}$		©	$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\overrightarrow{7}$		$\underset{\sim}{\infty}$	$\underset{\sim}{\infty} \sim \sim_{\sim}^{\sim} \sim \sim_{0}^{\sim}$
		$\begin{array}{llll} 0 & \sim \\ \stackrel{\alpha}{\alpha} \dot{\omega} \stackrel{\sim}{c} \end{array}$	$\left\|\begin{array}{cc} \therefore \dot{r} & - \\ \dot{m} & \dot{m} \end{array}\right\|$	$\begin{array}{ccc} \approx & \infty \\ \dot{\sim} & \infty \\ \dot{\infty} & \dot{\sim} \end{array}$	$\left.\begin{array}{cc} \infty & \infty \\ \dot{\alpha} & \stackrel{\alpha}{\alpha} \end{array} \right\rvert\,$	$\cdots$	$\left\|\begin{array}{cc} \infty & 0 \\ \dot{m} & \dot{m} \end{array}\right\|$	$\begin{array}{ccc} \overrightarrow{1} & \stackrel{\sim}{c} \\ \therefore \dot{\sim} & \dot{m} \end{array}$	$\begin{array}{ccc}\sim \\ \sim & 1 & \sim \\ \sim\end{array}$		$\left.\begin{array}{lll} \sim \\ \stackrel{\sim}{\alpha} & 1 & n \\ \stackrel{\sim}{n} \end{array} \right\rvert\,$	
			$\left\|\begin{array}{ll} 1 & 7 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & \infty \end{array}\right\|$		$\begin{array}{ll} 8 & 0 \\ 8 & 8 \\ 08 \\ 0 \\ 8 \\ 8 \end{array}$			$\left\|\begin{array}{ccc} \infty & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ & 0 \\ \hline \end{array}\right\|$	$\begin{array}{lll} \text { in } & 0 & 0 \\ 0 & 0 \\ 0 & \vdots \\ 0 \\ 0 & 0 \\ \vdots & 0 \end{array}$		$\begin{array}{lcc} \substack{0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$	
		$\begin{array}{cc} 0 & \circ \\ \text { is } & \text { is in } \end{array}$	$\begin{aligned} & 0 \\ & \dot{n} \end{aligned}$	$\left\lvert\, \begin{array}{lll} 0 & 0 \\ \text { in } & 0 \end{array}\right.$	$\begin{aligned} 0 \\ i \\ i \end{aligned}$	$\left[\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ \text { in } & \text { in } & \text { in in in } & \text { in } \end{array}\right.$	$0$	$\begin{array}{cc} 0 & 0 \\ \text { in in } \end{array}$	－ 0	000000 in in in in in in	$\begin{array}{cc} 0 & 0 \\ \text { in in } \end{array}$	00000 in $\operatorname{si}$ in in in
		－	$\begin{aligned} & 0 \\ & \dot{m} \end{aligned}$	－	$\begin{aligned} & \circ \\ & \dot{m} \end{aligned}$		$\begin{aligned} & \circ \\ & \dot{m} \end{aligned}$	$\begin{array}{lll} 0 & 0 \\ \dot{m} & \dot{m} \end{array}$	－	$\stackrel{\circ}{\circ} \dot{\circ} \dot{\gamma} \dot{\gamma} \dot{\sim} \dot{x} \dot{m} \dot{m}$	$\begin{aligned} & \circ \\ & \dot{m} \dot{\circ} \\ & \text { ल } \end{aligned}$	
			$\begin{aligned} & 0 \\ & \dot{m} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{array}{cc} 0 & 0 \\ \dot{m} \\ \underset{\sim}{n} \\ \end{array}\right.$	$\begin{gathered} 0 \\ \underset{\sim}{9} \end{gathered}$		$\begin{gathered} 0 \\ \dot{M} \\ \underset{\sim}{2} \end{gathered}$		$\left\lvert\, \begin{array}{ll} 0 & 0 \\ \dot{H} & \text { in } \end{array}\right.$		$\stackrel{\circ}{\circ} \stackrel{\circ}{\dot{\sim}} \underset{\sim}{\dot{N}}$	
		（1）${ }_{\text {¢ }}^{\text {Hic }}$	$\stackrel{\otimes}{\text { ® }}$	\％in	か	¢ ${ }_{\sim}^{\text {a }}$	F	今号	8 －	¢®®	® ${ }_{\sim}^{\text {H }}$	
			윽	－	윽		®	8 8：80	（1）${ }_{\text {® }}^{\infty}$		－	
	$\begin{aligned} & \text { 프을 } \\ & \underset{\sim}{z} \\ & \hline \end{aligned}$		$\left\lvert\, \begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 7 \\ & \hline \end{aligned}\right.$	$\begin{aligned} & 0.80 \\ & 0.8 \\ & \\ & \hline 1 \\ & \hline \end{aligned}$			$\begin{array}{ll} 8 & 0 \\ \hline & 0 \\ \text { y } \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll} 8 & 0 & 0 \\ 0 & 0 \\ -1 & 0 \\ \hline \end{array}\right.$	$\left\|\begin{array}{lll} 0 & 8 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$			
	$\begin{array}{ll} \frac{1}{2} & : \\ \frac{2}{3} & \\ \hline \end{array}$						$\left\lvert\,\right.$		$\left\|\begin{array}{lll}  & & 0 \\ \infty & \infty & 1 \\ 1 & 1 & \tilde{1} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ & & 0 \\ 0 \end{array}\right\|$	$\left\lvert\,\right.$		


$\text { Sheet } 2 \text { of } 2$		8      0   0   0   0   0	$\begin{gathered} \hline 8 \\ 0 \\ \stackrel{0}{0} \\ 0 \\ \infty \end{gathered}$	$\circ$ 0 0 0 0 $\infty$	$\begin{aligned} & \hline 8 \\ & \stackrel{0}{0} \\ & \stackrel{1}{10} \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{c\|} \hline 8 \\ 0 \\ 10 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{c\|} \hline 8 \\ \stackrel{3}{2} \\ \alpha \\ \alpha \\ \infty \end{array}$	$\begin{array}{l\|} \hline 8 \\ 0 \\ 0.0 \\ 0 \\ \underset{\sim}{0} \\ \underset{\sim}{n} \end{array}$	$\begin{aligned} & \hline 0 \\ & \dot{c} \\ & \dot{0} \\ & 0 \\ & 0 \\ & \end{aligned}$			$\begin{array}{l\|} \hline 8 \\ \vdots \\ 0 \\ \infty \\ 0 \\ 0 \end{array}$		
		$\mid$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 1 \\ & 1 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 앙 } \\ & \text { in } \\ & 1 \\ & 1 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & \vdots \\ & \hline 0 \\ & \hline \end{aligned}$	11				i	$\begin{aligned} & \dot{y} \\ & \underset{\sim}{\prime} \\ & 1 \\ & 1 \\ & \dot{o} \\ & \dot{\sim} \end{aligned}$			
		11	！	11	11	$\begin{array}{\|c\|} \hline \bar{y} \\ \text { f } \\ 1 \\ 1 \\ \vdots \\ \dot{0} \end{array}$	1111	1111	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	I	11	11		
ENGINEERING AND DESIGN DATAArea $\mathbf{8 - E d i s t o ~ I s l a n d ~}$		（	m	$\underset{\sim}{\infty} \underset{\sim}{\infty}$	® ${ }_{8}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty} \times{ }_{0}$		め＠	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$		
		$\begin{array}{ccc}\sim & \sim \\ \sim & 1 & \sim \\ \sim\end{array}$	$\left\|\begin{array}{ll} 0 & 0 \\ \dot{\alpha} & \dot{\alpha} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\sim}$	$\begin{array}{ccc} 0 & - & 0 \\ \dot{\circ} & \underset{\sim}{r} & \dot{\alpha} \end{array}$		vicc：c	¢ $\dot{0}$ ¢ 1	$\begin{array}{l\|l\|lll} \infty & \ddots \\ \dot{\gamma} & & \mid & \mid & \dot{0} \\ \dot{\infty} \end{array}$		$\begin{array}{ccc} 0 & 0 \\ \dot{\alpha} \stackrel{\circ}{\dot{\circ}} \dot{m} \end{array}$			$\stackrel{N}{\dot{\circ}}$
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \\ & \text { in } \\ & \hline 1 \end{aligned}$							$\begin{array}{ll} y_{1} & 0 \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \end{array}$				$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \dot{\infty} \\ & \dot{0} \\ & \hline 0 \end{aligned}$
		$\left\lvert\, \begin{array}{cc} 0 & 0 \\ i 0 & \circ \\ i 0 \end{array}\right.$	$\begin{gathered} 0 \\ i 0 \\ \hline \end{gathered}$	$\begin{array}{cc} 0 & 0 \\ \text { in } & \text { in } \end{array}$	$\left[\begin{array}{cc} 0 & 0 \\ \text { in } & 0 \end{array}\right.$	$\begin{array}{cc} 0 & 0 \\ 10 & 10 \end{array}$	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 10 & 10 & 10 & 10 \\ \hline 10 \end{array}\right.$	$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ \text { in } & \text { in in } & 0 \\ \text { in } \end{array}$	$\begin{array}{ccccc} 0 & 0 & 0 & 0 \\ \text { in is is in in } \end{array}$	$\stackrel{\circ}{i 0}$	$\begin{array}{cc} 0 \\ \text { is is } \\ \text { in } \end{array}$	$\begin{gathered} 0 \\ 0 \\ \text { in } \\ \hline 10 \end{gathered}$		
		$\left\lvert\, \begin{array}{cc} \circ & 0 \\ \dot{m} & \dot{m} \end{array}\right.$	$\stackrel{+}{\dot{m}}$	$\begin{array}{cc} \circ & 0 \\ \dot{m} & \dot{m} \end{array}$	$\begin{array}{ll} 0 & 0 \\ \dot{m} \\ \dot{\gamma} \end{array}$	$\begin{array}{ll} \circ & 0 \\ \dot{m} \dot{m} \end{array}$		$\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ \dot{m} & \dot{m} & \dot{\gamma} & \dot{0} \end{array}\right.$		$\stackrel{\circ}{\dot{\rho}}$	$\stackrel{\circ}{\circ} \dot{\oplus}$	$\begin{array}{cc} \circ & 0 \\ \dot{m} \dot{m} \end{array}$		
	年		$\underset{\sim}{0} \underset{\sim}{\dot{M}}$	$\begin{aligned} & 0.0 \\ & \dot{m} \\ & \stackrel{\sim}{m} \end{aligned}$	$\left\lvert\, \begin{array}{cc} \circ & 0 \\ \dot{j} & \underset{\sim}{j} \end{array}\right.$	$\begin{aligned} & 00 \\ & \dot{M} \dot{-1} \\ & \underset{\sim}{\circ} \end{aligned}$				$\begin{aligned} & 0 \\ & \underset{\sim}{9} \end{aligned}$	$\begin{array}{cc} \circ & 0 \\ \underset{\sim}{\dot{m}} \underset{\sim}{\circ} \end{array}$	$\begin{aligned} & 00 \\ & \dot{M} \dot{\sim} \dot{\sim} \end{aligned}$		
		$\underset{\sim}{\infty}$	$\stackrel{10}{7}$	© 0	А¢	N゙枵			N	N	－	－9		
		－	$\stackrel{\otimes}{c}$	O\％	¢	－	Hiom	N＇		$\stackrel{\text {－}}{\substack{\text {－}}}$		－		
	동		$\left\lvert\, \begin{array}{ll} \circ & 0 \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 \end{array}\right.$									$\left\|\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & i \\ 0 & 0 \\ \hline \end{array}\right\|$		$\circ$   8   0   -7
	发									$\begin{array}{rr}  & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \\ & 0 \\ 0 \\ \hline \end{array}$				


ENGINEERING AND DESIGN DATA												
				CHAN	El dimen	SIONS			REQUIRED			TOTAL
CANAL   No. (1)	LEM GTH Ft. (2)	Watershed Ac. (3)	oischarge c. f. 8 . (4)	$\begin{aligned} & \text { TOP } \\ & \text { W10TH } \\ & \text { F t. } \\ & (5) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { BOTTOM } \\ \text { WIDTH } \\ \text { Ft. } \\ (6) \end{array}$	$\begin{gathered} \text { AVERAGE } \\ \text { DEP TH } \\ \text { Ft. } \\ (7! \end{gathered}$	EXCAVATION   Cu. Yds.   (8)	RT. OF WAY CLEARIMG $A C$. (9)	$\begin{gathered} \text { RT. OF WAY } \\ \text { WIDTH } \\ \text { Ft. } \\ (10) \end{gathered}$	CULVERTS   LOWERING   Length \& Size   (11)	CULVERTS \& GRIDGES - HEW Length \& size (12)	$\begin{gathered} \text { ESTIMATED } \\ \text { COST } \\ \text { Dollars } \\ (13) \end{gathered}$
M-1	8000	582	42	14.0	4.0	5.0	10,020	4.8	41	--	--	
M-1	5000	987	85	17.0	7.0	5.0	11, 100	5.8	55	--	15' R.C.Bridge	
M-1	1500	1832	109	22.0	12.0	5.0	4725	1.9	82	--	--	
M-1	1200	2334	135	24.0	14.0	5.0	4224	1.7	88	--	15' Bridge	
M-1	5100	2656	145	26.0	18.0	5.0	19.839	7.9	73	--	15. Bridge	
L-1	5900	356	28	13.0	3.0	5.0	8732	4.3	38	--	40' - 42"	
L-2	8000	478	35	13.0	3.0	5.0	8880	4.4	38	--	$\begin{aligned} & 15^{\prime} \text { Bridge } \\ & 40^{\prime}-38^{\prime \prime} \end{aligned}$	
$\begin{gathered} \text { L-3 } \\ \text { Total-1 } \end{gathered}$	$\begin{array}{r} 5700 \\ 38,400 \end{array}$	287	22	13.0	3.0	5.0	$\begin{array}{r} 8438 \\ 75,956 \end{array}$	$\begin{array}{r} 4.1 \\ 34.7 \end{array}$	38	--		42,326.00
M-2	7000	588	42	13.0	3.0	5.0	10,360	5.1	38	--	15' Bridge	
M-2	1000	799	55	14.0	4.0	5.0	1870	0.8	41	--	15' Bridge	
M-2	1500	849	57	14.0	4.0	5.0	2505	1.2	41	--	-	
M-2	2100	1401	87	17.0	7.0	5.0	4862	2.1	49	--	--	
M-2	1100	1700	101	18.0	8.0	5.0	2851	1.2	52	--	15. Bridge	
M-2	1400	1739	103	18.0	8.0	5.0	3374	--	52	--	--	
M-2	900	2077	120	19.0	9.0	5.0	2331	--	55	--	--	
L-1	3800	474	35	13.0	3.0	5.0	5328	2.8	38	--		
L-2	4800	131	12	13.0	3.0	5.0	7104	3.5	38	--	40'-24"	
L-3	4200	255	20	13.0	3.0	5.0	8216	3.1	38	--	40' - $36^{\prime \prime}$	
$\begin{gathered} \mathrm{L}-3 \\ \text { Total-2 } \end{gathered}$	$\begin{array}{r} 2200 \\ 29,800 \end{array}$	310	24	13.0	3.0	5.0	$\begin{array}{r} 3258 \\ 49,457 \end{array}$	$\begin{array}{r} 1.8 \\ 21.2 \end{array}$	38	--	40' - 80"	28,831.00
$\begin{gathered} \text { M-3 } \\ \text { Total-3 } \end{gathered}$	$\begin{aligned} & 4200 \\ & 4200 \\ & \hline \end{aligned}$	172	15	13.0	3.0	5.0	$\begin{array}{r} 6216 \\ 6218 \\ \hline \end{array}$	$\begin{array}{r} 2.2 \\ 2.2 \\ \hline \end{array}$	38	--	$40^{\prime}-24^{\prime \prime}$	2,816.00
M-4	3800	775	53	14.0	4.0	5.0	8012	2.9	41	--	--	
M-4	1800	1536	94	17.0	7.0	5.0	3552	1.6	49	--	--	
M-4	3100	1880	111	18.0	8.0	5.0	7470	1.6	52	--		
L-1	4500	844	45	13.0	3.0	5.0	8880	3.3	38	--	15' Bridge	
Total-4	12,800						23,694	9.4				14,831.00
M-5	4800	718	48	13.0	3.0	5.0	8808	3.4	38	--	50' - $38{ }^{\prime \prime}$	
M-5	5100	900	80	14.0	4.0	5.0	8518	4.1	41	--	--	
Total-5	9700						15,324	7.5				8,285.00
M-8	8000	1578	21	13.0	3.0	5.0	11.840	5.9	38	--	$30^{\circ}-80{ }^{\prime \prime}$	
M-8	8300	2555	32	13.0	3.0	5.0	12.284	6.1	38	-_	-	
M-8	8000	4395	50	16.0	8.0	5.0	16,320	7.3	48	--	--	
M-8	8000	5453	80	17.0	7.0	5.0	17.780	7.9	49	--	--	
M-6	4500	9930	100	22.0	12.0	5.0	14,175	5.8	82	--	--	
M-6	8800	10,813	108	22.0	12.0	5.0	21.420	8.7	82	--	--	
M-6	1300	13,548	129	24.0	14.0	5.0	4578	1.9	88	--	45. Bridge	
M-8	2700	13.755	131	26.0	18.0	5.0	10, 203	4.2	73	--	45, Bridge	
M-8	4000	14.072	133	26.0	16.0	5.0	15,560	6.2	73	--	--	
L-1	9300	2088	27	13.0	3.0	5.0	13,784	8.8	38	--	15' Bridge	
L-1	8700	3149	38	14.0	4.0	5.0	11. 189	5.4	41	--	--	
L-1	8100	3783	42	14.0	4.0	5.0	10.187	4.9	41	--	--	
L-2	7000	1456	20	13.0	3.0	5.0	10,360	5.1	38	--	--	
L-2	10,200	2806	32	13.0	3.0	5.0	15.098	7.5	38	--	--	
Total-6	190.900						185,034	83.7				87,286.00



Area 9-Mc Clellanville												Sheet 3 of 4
				CHAN	EL dimel	Slons			Requi red			total
CANAL   No. (1)	LEM OTH Ft. (2)	WATERSHED Ac. (3)	olscharge   c. f.s.   (4)	$\begin{array}{\|c\|} \hline \text { TOP } \\ \text { WIDTH } \\ \text { Ft. } \\ (5) \end{array}$	BOTTOM WIDTH Ft. $(6)$	AVERAGE DEPTH Ft. (7)	excavation   Cu. Yde.   (8)	RT. OF WAY Clearina Ac. (9)	```RT. OF WAY WIDTH Ft. (10)```	culverts   LOWERIMO   Length \& SIze   (11)	CULVERTS \& BRIDGES - HEW Length \& Slze (12)	$\begin{gathered} \text { ESTIMATED } \\ \text { COST } \\ \text { Dollars } \\ (13) \end{gathered}$
M-17	3000	292	5	13.0	3.0	5.0	4440	2.2	38	40' - $24{ }^{\prime \prime}$	--	
M-17	8500	2546	32	13.0	3.0	5.0	9820	4.8	38	--	--	
M-17	9500	4718	53	16.0	8.0	5.0	19.380	8.7	48	--	--	
L-1	9500	888	13	13.0	3.0	5.0	14,080	8.9	38	-	--	
L-2	7000	888	11	13.0	3.0	5.0	10,380	5.1	38	--	--	
L-3	7400	1070	15	13.0	3.0	5.0	10.952	5.4	38	--	15' Bridge	
L-3	2500	1127	18	13.0	3.0	5.0	3700	1.8	38	--	--	
L-4	8300	1082	15	13.0	3.0	5.0	9342	4.8	38	--	40' - 80"	
L-4	3000	1292	18	13.0	3.0	5.0	4440	2.2	38	--	15' Bridge	
Total-17	54,700						86.294	41.9				41,278.00
M-18	7000	580	41	14.0	4.0	5.0	11.690	5.8	41	--	120' - 48"	
M-18	8500	1013	88	18.0	8.0	5.0	13,280	8.0	48	--	15' Bridge	
Total-18	13,500						24.950	11.6				14,888.00
M-19	5100	358	28	13.0	3.0	5.0	7548	3.7	38	--	50' - 42"	
M-19	5800	701	49	14.0	4.0	5.0	8288	4.5	41	--	15' Bridge	
M-19	5300	1023	87	18.0	8.0	5.0	7844	4.9	48	--	--	
Total-19	18.000						23.880	13.1				13,220.00
M-20	7800	1819	98	18.0	8.0	5.0	18,318	8.0	52	--	15. Bridge	
M-20	4900	2208	124	20.0	10.0	5.0	13,822	5.7	57	--	--	
M-20	5800	3092	189	28.0	18.0	5.0	21,784	8.8	73	--	--	
L-1	8500	242	20	13.0	3.0	5.0	9820	4.8	38	--	--	
Total-20	24,800						83,342	27.1				27,195.00
M-21	2300	448	7	13.0	3.0	5.0	3404	1.7	38	--	--	
M-21	4000	837	10	13.0	3.0	5.0	5920	2.9	38	--	--	
Total-21	8300						9324	4.8				3.941 .00
M-22	3800	858	13	13.0	3.0	5.0	5824	2.8	38	--	--	
M-22	7200	1148	18	13.0	3.0	5.0	10,858	5.3	38	--	--	
Total-22	11,000						16,280	8.1				9.569 .00
M-23	5300	1334	18	13.0	3.0	5.0	7844	3.9	38	--	15' Bridge	
M-23	7500	2133	21	13.0	3.0	5.0	11, 100	5.5	38	--	--	
L-1	3300	212	3	13.0	3.0	5.0	4884	2.4	38	--	$30^{\prime \prime}-30 "$	
Total-23	16, 100						23,828	11.8				12,288.00
M-24	11,900	874	13	13.0	3.0	5.0	17.812	8.7	38	--	--	
M-24	2900	2010	28	13.0	3.0	5.0	4292	2.1	38	--	--	
M-24	1800	3558	42	14.0	4.0	5.0	2872	1.3	41	--	--	
M-24	5900	8105	88	17.0	7.0	5.0	13.098	5.8	49	--	--	
L-1	8700	529	9	13.0	3.0	5.0	9918	4.9	38	--	--	
L-2	5300	833	12	13.0	3.0	5.0	7844	3.9	38	80' - $38{ }^{\prime \prime}$	40' - 30"   15. Bridge	
L-2	8200	1293	18	13.0	3.0	5.0	12,138	8.0	38	--	15. Bridge	
L-3	9700	1702	23	13.0	3.0	5.0	14,358	7.1	38	--	15. Bridge	
L-3	4800	2213	28	13.0	3.0	5.0	7104	3.5	38	--	15. Bridge	
Total-24	57.000						89,030	43.3				56,880.00


				ENGINEERING AND DESIGN DATA Area 9-Mc Clellanville						Sheet 4 of 4		
				CHAM	el dimen	SIONS			REQUIRED			total
CANAL   No.   (1)	$\begin{gathered} \text { LEN GTH } \\ \text { Ft. } \\ \text { (2) } \\ \hline \end{gathered}$	watershed   Ac.   (3)	discharge   c.f.8.   (4)	TOP   WIOTH   Ft.   (5)	$\qquad$	$\begin{array}{\|c\|} \hline \text { AVERAGE } \\ \text { DEP TH } \\ \text { Ft. } \\ (7) \\ \hline \end{array}$	excavation   $\mathrm{Cu} . \mathrm{Yds}$.   (8)	RT. OF WAY CLEARIMG Ac.   (9)	$\begin{aligned} & \text { RT. OF WAY } \\ & \text { WIDTH } \\ & \text { Ft. } \\ & (10) \end{aligned}$	culverts   LOWERIMG   Length \& Sizo (Ii)	CULVERTS \& BRIDGES - NEW Length \& Slze (12)	ESTIMATED COST Dollars $(13)$
M-25	4400	442	7	13.0	3.0	5.0	8512	3.2	38	--	$30^{\prime}-54 "$	
M-25	4800	1118	18	13.0	3.0	5.0	8808	3.4	38			
M-25	1900	3432	41	14.0	4.0	5.0	3172	1.5	41	--		
M-25	5800	4711	47	15.0	5.0	5.0	10.730	5.1	44	--		
M-25	3500	4978	58	18.0	8.0	5.0	7140	3.2	48	--		
L-1	5500	1302	18	13.0	3.0	5.0	8140	4.0	38	--	兂	
L-1	5700	2289	29	13.0	3.0	5.0	8438	4.2	38	--	15' Bridge	
L-2	4400	352	8	13.0	3.0	5.0	8512	3.2	38	--	$30^{\prime}$ - $54 "$	
L-2	2800	508	8	13.0	3.0	5.0	3848	1.9	38	--	-_	
Total-25	38,400						81,298	29.7				29,004.00
Area 9 Grand Total	818,300						1,082.879	492.5				552,698.00

ENGINEERING AND DESIGN DATA
ENGINEERING AND DESIGN DATA

$\begin{aligned} & \text { canal } \\ & \text { No. } \\ & \text { (i) } \end{aligned}$	LEN OTH   ft.   (2)	watershed   Ac.   (3)	DISCHARGE   c. f. 8.   (4)	Channel dimensions			EXCAVATIOH   Cu. Yds.   ( 8 )	RT. OF WAY CLEARINO Ac. (8)	REQUIRED   RT. OF WAY WIDTH Ft.   (10)	$\begin{gathered} \text { CULVERTS } \\ \text { LOWERING } \\ \text { bength \& Size } \\ \text { (II) } \end{gathered}$	CULVERTS \& bridges - new Length \& Slze (12)	$\begin{gathered} \text { TOTAL } \\ \text { ESTIMATED } \\ \text { COST } \\ \text { Dollars } \\ (13) \end{gathered}$
				$\begin{aligned} & \text { TOP } \\ & \text { WIDTH } \\ & \text { Ft. } \\ & \text { (5) } \end{aligned}$	$\begin{aligned} & \text { BOTTOM } \\ & \text { WIDTH } \\ & \text { Ft. } \\ & (6) \end{aligned}$	AVERAGE DEP TH Ft. (7)						
$\begin{gathered} \text { M-1 } \\ \text { Total-1 } \end{gathered}$	This canal as constructed is considered adequate											
$M-2$ $M-2$ $\mathrm{~L}-1$ Total-2	$\text { 11, } 400$	1228 canal as canal as co		$\begin{aligned} & 13.0 \\ & \text { adequ } \\ & \text { adequ } \end{aligned}$		5.0	$\begin{aligned} & 18,872 \\ & 18,872 \end{aligned}$	8.4   8.4	38	--	--	7.158.00
$\begin{gathered} M-3 \\ M-3 \\ M-3 \\ \text { Total-3 } \end{gathered}$	$\begin{array}{r} 10,500 \\ 3300 \\ 8100 \\ 19,900 \end{array}$	1088 1530 1838	71 91 103	18.0 18.0 19.0	8.0 8.0 8.0	5.0 5.0 5.0	$\begin{array}{r} 21,420 \\ 7953 \\ 15,799 \\ 45,172 \end{array}$	$\begin{array}{r} 9.8 \\ 3.5 \\ 8.9 \\ 20.0 \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & 52 \\ & 55 \end{aligned}$	--	$\text { зо' } \begin{aligned} & \text {-- } \\ & \text { Trestle } \end{aligned}$	32,657.00
M-4 M-4 M-4 Total-4	7200 3400 7300 17,900	409 830 991	31 44 85	$\begin{aligned} & 13.0 \\ & 13.0 \\ & 18.0 \end{aligned}$	3.0 3.0 8.0	$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 10.858 \\ 5032 \\ 14,892 \\ 30.580 \end{array}$	$\begin{aligned} & \hline 5.3 \\ & 2.5 \\ & 1.5 \\ & 9.3 \end{aligned}$	38 38 48	-- -- --	$\begin{array}{r} 30^{\prime}-48^{\prime \prime} \\ 40^{\prime}-80^{\prime \prime} \\ 40^{\prime}-88^{\prime \prime} \\ 130^{\prime}-88^{\prime \prime} \\ 15^{\prime} \text { Bridge } \end{array}$	24.454 .00
$\begin{gathered} \text { M-5 } \\ \text { M-5 } \\ \text { Total-5 } \end{gathered}$	$\begin{aligned} & 4100 \\ & 4000 \\ & 8100 \end{aligned}$	489 825	35 44	13.0 13.0	3.0 3.0	5.0 5.0	$\begin{array}{r} 8088 \\ 5920 \\ 11,988 \end{array}$	$\begin{aligned} & 3.0 \\ & 2.9 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	--	--	5,082.00
$\begin{gathered} M-6 \\ M-8 \\ \text { Total-8 } \end{gathered}$	$\begin{aligned} & 4500 \\ & 4500 \\ & 9000 \\ & \hline \end{aligned}$	674 1019	11 15			5.0 5.0	$\begin{array}{r} 8880 \\ 8880 \\ 13,320 \\ \hline \end{array}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & 8.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	--	--	5,840.00
M-7 $M-7$ Total-7	$\begin{array}{r} 5500 \\ 5800 \\ 11,300 \end{array}$	$\begin{aligned} & 1389 \\ & 2385 \end{aligned}$	$\begin{aligned} & 20 \\ & 31 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 8140 \\ 8584 \\ 18,724 \end{array}$	$\begin{aligned} & 4.0 \\ & 4.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	--	30' - ${ }^{\text {- }}$	7,944.00
$\begin{gathered} M-8 \\ M-8 \\ \text { Total-8 } \end{gathered}$	$\begin{array}{r} 9800 \\ 2800 \\ 12,800 \end{array}$	$\begin{gathered} \text { This } \\ 1780 \end{gathered}$	$\begin{aligned} & \text { al as cons } \\ & 104 \end{aligned}$	tructed $18.0$	$\begin{aligned} & \text { is ad } \\ & 8.0 \end{aligned}$	$\begin{aligned} & \text { ate } \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8748 \\ & 8748 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	52	--	--	3.102 .00
Area 11   Grand   Total	90,200						141,404	80.40				88,017.00


$\begin{aligned} & \sim \\ & \stackrel{2}{\circ} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\Phi}{5} \end{aligned}$		$\begin{aligned} & \circ \\ & + \\ & \dot{\Phi} \\ & \infty \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$						$\circ$   0   0   0   0   0   0   10	
		111	11							
		111	11	1111			1 1 1 1 1 i	1 1 1 1 1	111	i i i i i i i i i i i i
		¢ ${ }_{4}^{\text {¢ }}$	¢0\％							¢0¢
		$\left\|\begin{array}{cccc} \dot{\omega} & \cdots & 0 & 0 \\ \dot{\omega} & \dot{\gamma} & \dot{O} & \dot{\infty} \end{array}\right\|$		$\left\|\begin{array}{ccccc} \infty & H & 0 & 0 & 0 \\ \dot{\gamma} & \dot{0} & \dot{j} & \dot{\gamma} & \underset{\sim}{0} \end{array}\right\|$					－	
		$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ \text { in } & \text { in } & \text { in } \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 0 & 0 \\ i n & 0 \\ i n \end{array}\right.$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ \text { in } & 0 \\ \text { in } & \text { in } & \text { in } \end{array}\right.$			$\circ \circ \circ \circ 00$  	응ㅇㅇㅇㅇ․	$\left\lvert\, \begin{array}{ccc} 0 & \circ & 0 \\ \dot{n} & \text { in } & \text { in } \end{array}\right.$	○○○0000000000  
			$\begin{gathered} 0 \\ \dot{\infty} \dot{0} \dot{0} \end{gathered}$		$\stackrel{\text { ® }}{\sim}$	$\stackrel{\square}{\text { ¢ }}$	$\circ 00000$ $\dot{\infty} \dot{\infty} \infty \dot{\infty} \dot{\infty} \dot{m}$		$\left\lvert\, \begin{array}{ccc} \circ & 0 & 0 \\ \dot{0} \dot{\infty} \dot{o} & \dot{\sigma} \end{array}\right.$	0000000000000  
			$\begin{array}{ll} 0 & 0 \\ \dot{m} \\ \underset{\sim}{0} \\ \hline \end{array}$		$\left.\begin{array}{l} -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]$	$\begin{array}{\|l\|l} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$	$\circ 00000$  			○○○○○○○○00000  
		8\％	¢人）		$\left.\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			स゙ロ	
			葆品命			$\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0_{0} \\ c_{0} \\ 0 \end{array}\right]$			$\left\lvert\, \begin{array}{lll} n & 0 & -1 \\ 0 & 0 \\ -1 & 0 \\ -1 & 0 & \underset{~}{n} \end{array}\right.$	
	등			$\left\|\begin{array}{rrrr} \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\begin{aligned} & \ddagger \\ & \underset{\xi}{E} \end{aligned}$					
	交			$\left\lvert\,\right.$		$\left\|\begin{array}{rr} 10 \\ & 10 \\ 0 & 1 \\ 1 & -5 \\ & \stackrel{0}{0} \\ \hline & 0 \end{array}\right\|$				かののかのののロののののの $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$

ENGINEERING AND DESIGN data


## SOIL LEGEND

SOIL GROUP

## SYMBOL

I Well Drained and Moderately Well Drained Soils with Loamy Sand to Sand Subsoils.

2 Somewhat Poorly Drained to Poorly Drained Soils with Sand to Loamy Sand Subsoils.

3 Poorly Drained and Very Poorly Drained Soils with Sand Subsoils and Organic Hardpan Soils.

4 Well Drained and Moderately Well Drained Soils with Sandy Loam to Sandy Clay Loam Subsoils.

5 Somewhat Poorly Drained to Poorly Drained Soils with Sandy Loam to Sandy Clay Loam Subsoils.

6 Poorly Drained and Very Poorly Drained Soils with Plastic Sandy Clay Loam to Sandy Clay Subsoils.

7 Poorly Drained and Very Poorly Drained Alluvial and Terrace Soils with Sandy Clay to Silty Clay Subsoils.

Miscellaneous Land Types
8 Tidal Marsh
9 Fresh Water Marsh
10 Dune Land
11 Swamp
12 Made Land
13 Mined areas - phosphate
14 Coastal beach

Figure No. 5
FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN ORAINAGE CANALS
CHARLESTON COUNTY SOUTH CAROLI CHARLESTON COUNTY, SOUTH CAROLINA

INDEX TO MAP SHEETS


## CONVENTIONAL SIGNS

Primary Road System
Interstate Highway
Federal Highway
State Highway
School

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINA


Minnie
School
1
8
5
4
4

## SOIL LEGEND

SOIL GROUP
1 Well Drained and Moderately Well Drained Soils with Loamy Sand to Sand Subsoils.

2 Somewhat Poorly Drained to Poorly Drained Solls with Sand to Loamy Sand Subsolls.

3 Poorly Drained and Very Poorly Dralned Soils with Sand Subsoils and Drganic Hardpan Soils.

4 Well Drained and Moderately Well Drained Soils with Sandy Loam to Sandy Clay Loam Subsoils.

5 Somewhat Poorly Drained to Poorly Drained Soils with Sandy Loam to Sandy Clay Loam Subsoils.
6 Poorly Drained and Very Poorly Drained Soils with Plastic Sandy Clay Loam to Sandy Clay Subsoils.

7 Poorly Drained and Very Poorly Drained Alluvial and Terrace Soils with Sandy Clay to Silty Clay Subsoils.

Miscellaneous Land Types
8 TIdal Marsh
9 Fresh Water Marsh
10 Dune Land
II Swamp
12 Made Land
13 Mined areas - phosphate
14 Coastal beach

CDNVENTIONAL SIGNS
Primary Road System
Interstate Highway
State Highway
School
Church

Primary Road System

Federal Highway
State Highway
School

Gravel Pit
County Line
Planning Unit Boundary and Number
Watershed Boundary
Main

Indicates existing canals or natural drainage in swamp

Reconnaissance Soil Boundary and Soll Group Number

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA

## GE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINA


FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA


FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA

## Ie CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA

(Joins sheet 3 )


## "LEY CREEK

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAIN, ill
(6)




## 'AGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAIN ${ }^{\wedge}$



## AGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAIN ${ }^{+1}$
(10)



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA


## AGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINA
(12)
(Joins sheef 11)
$8(20)$
17
2.4

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAII



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY SOUTH CAROLINA

$+$

[^1]

$\qquad$


#### Abstract

(ins sheer


正

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINA
(16)
(Joins sheet 15)

(Joins right above)


FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA


## AGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



## 

(Joins left below)


FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAIN



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA


## A AE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



ANDERSON
HARBOR

$$
W \mid L D L I F E \quad R E F U G E
$$

ATLANTIC


BERKELE
4

EEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESION COUNTY, SOUTH CAROLINA


FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA


## Aage canals in charleston county, south carolina



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAIN


FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA


Pac
A

## )LIFE REFUGE



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAIN A
(24)
(Joins sheet 23)
FRANCIS 2 MARION
NATIONAL FOREST E NR WAY
(Joins sheet 22) I (Joins sheet 21)

ROMAN RIVER

ATLANTIC OCEAN


11
CRRKBLBr COUNr

FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA



FEASIBILITY STUDY OF REQUIREMENTS FOR MAIN DRAINAGE CANALS IN CHARLESTON COUNTY, SOUTH CAROLINA





[^0]:    cfs - Abbreviation for cubic feet per second; a unit of water flow - sometimes called "second

[^1]:    s. sis

